Skip to main content
Log in

Study of the Evaporation of Hydrochloric Acid: Modeling and Experiment

  • Heat Transfer in Phase Transitions
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A mathematical description of the evaporation of a binary solution from the free surface of a spill has been proposed. Results of experimental study on the evaporation of hydrochloric acid in a wind tunnel have been presented. It has been established that the resistance of the evaporating component to transfer in the liquid phase exerts a substantial influence in the intensity of evaporation of hydrochloric acid. The effective diffusion coefficient has been determined experimentally, which allows for the influence of the resistance to mass transfer in the liquid phase on the intensity of evaporation of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Vik and Reif B. A. Pettersson, Implementation of a New and Improved Evaporation Model in Fluent, FFI-rapport 2011/00116, Norwegian Defence Research Establishment (FFI) (2011).

  2. M. Lateb, C. Masson, T. Stathopoulos, and C. Bedard, Numerical simulation of pollutant dispersion around a building complex, Build. Environ., 45, No. 8, 1788–1798 (2010).

    Article  Google Scholar 

  3. Y. Tominaga and T. Stathopoulos, Numerical simulation of dispersion around an isolated cubic building: model evaluation of RANS and LES, Build. Environ., 45, No. 10, 2231–2239 (2010).

    Article  Google Scholar 

  4. S. M. Tauseef, D. Rashtchian, and S. A. Abbasi, CFD-based simulation of dense gas dispersion in presence of obstacles, J. Loss Prevent. Process Ind., 24, No. 4, 371–376 (2011).

    Article  Google Scholar 

  5. P. W. M. Brighton, Evaporation from a plane liquid surface into a turbulent boundary layer, J. Fluid Mechanics, 159, 323–345 (1985).

    Article  MATH  Google Scholar 

  6. A. Habib, B. Schalau, A. Acikalin, and J. Steinbach, Transient calculation of the boundary layer flow over spills, Chem. Eng. Technol., 32, No. 2, 306–311 (2009).

    Article  Google Scholar 

  7. S. Khajehnajafi and R. Pourdarvish, Correlations for mass transfer from a liquid spill: comparisons and recommendations, Process Saf. Prog., 30, No. 2, 178–184 (2011).

    Article  Google Scholar 

  8. F. Heymes, L. Aprin, A. Bony, S. Forestier, S. Cirocchi, and G. Dusserre, An experimental investigation of evaporation rates for different volatile organic compounds, Process Saf. Prog., 32, No. 2, 193–198 (2013).

    Article  Google Scholar 

  9. A. D. Galeev and S. I. Ponikarov, Numerical analysis of the process of heated oil evaporation from the emergency spill surface, Inzh.-Fiz. Zh., 84, No. 6, 1297–1305 (2011).

    Google Scholar 

  10. M. F. Fingas, Studies on the evaporation of crude oil and petroleum products: I. The relationship between evaporation rate and time, J. Hazard. Mater., 56, No. 3, 227–236 (1997).

    Article  Google Scholar 

  11. M. F. Fingas, Studies on the evaporation of crude oil and petroleum products: II. Boundary layer regulation, J. Hazard. Mater., 57, Nos. 1–3, 41–58 (1998).

    Article  Google Scholar 

  12. M. F. Fingas, Modeling evaporation using models that are not boundary layer regulated, J. Hazard. Mater., 107, Nos. 1, 2, 27–36 (2004).

    Article  Google Scholar 

  13. K. Okamoto, N. Watanabe, Y. Hagimoto, K. Miwa, and H. Ohtahi, Evaporation characteristics of multi-component liquid, J. Loss Prevent. Process Ind., 23, No. 1, 89–97 (2010).

    Article  Google Scholar 

  14. S. R. Hanna and P. J. Drivas, Modeling VOC emissions and air concentration from the Exxon Valdez oil spill, Air & Waste, 43, No. 3, 298–309 (1993).

    Article  Google Scholar 

  15. P. Leonelli, C. Stramigioli, and G. Spadoni, The modeling of pool vaporization, J. Loss Prevent. Process Ind., 7, No. 6, 443–450 (1994).

    Article  Google Scholar 

  16. J. L. Mikesell, A. C. Buckland, V. Diaz, and J. J. Kives, Evaporation of contained spills of multicomponent nonideal solutions, in: Proc. Int. Conf. and Workshop on Modeling and Mitigating the Consequences of Accidental Releases of Hazardous Materials, CCPS, AIChE, 1991, pp. 103–125.

  17. G. Desoutter, C. Habchi, B. Cuenot, and T. Poinsot, DNS and modeling of the turbulent boundary layer over an evaporating liquid film, Int. J. Heat Mass Transf., 52, Issues 25–26, 6028–6041 (2009).

    Article  MATH  Google Scholar 

  18. A. D. Galeev, E. V. Starovoitova, and S. I. Ponikarov, Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere, Inzh.-Fiz. Zh., 84, No. 1, 203–212 (2013).

    Google Scholar 

  19. A. Blanchard and D. Hadlock, Source Term Determination for Spills of Binary Liquid Solutions, Technical Report WSRC-TR-96-0404, Westinghouse Savannah River Company (1997).

  20. A. D. Galeev, A. A. Salin, and S. I. Ponikarov, Consequence analysis of aqueous ammonia spill using computational fluid dynamics, J. Loss Prevent. Process Ind., 26, No. 4, 628–638 (2013).

    Article  Google Scholar 

  21. D. W. Green and R. H. Perry, Chemical Engineer's Handbook, 8th ed., McGraw-Hill (2008).

  22. Fluent Inc. Fluent 6.1. User's Guide, Lebanon (2003).

  23. C. K. Law, Combustion Physics, Cambridge University Press (2006).

  24. A. D. Galeev, E. V. Starovoytova, and S. I. Ponikarov, Numerical simulation of the consequences of liquefied ammonia instantaneous release using FLUENT software, Process Safety Environ. Protect., 91, No. 3, 191–201 (2013).

    Article  Google Scholar 

  25. T. H. Shih, W. W. Liou, A. Shabbir, and J. Zhu, A new k–ε eddy-viscosity model for high Reynolds number turbulent flows — model development and validation, Comput. Fluids, 24, No. 3, 227–238 (1995).

    Article  MATH  Google Scholar 

  26. H. Schlichting, Boundary-Layer Theory, 6th ed., McGraw-Hill, New York (1968).

    Google Scholar 

  27. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Galeev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 87, No. 3, pp. 730–738, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salin, A.A., Galeev, A.D. & Ponikarov, S.I. Study of the Evaporation of Hydrochloric Acid: Modeling and Experiment. J Eng Phys Thermophy 87, 753–762 (2014). https://doi.org/10.1007/s10891-014-1069-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-014-1069-2

Keywords

Navigation