Skip to main content
Log in

Physics of Laser-Induced Plasma Streams Under Irradiation of Metals with Nanosecond Laser Radiation Pulses at Atmospheric Pressure

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

We have investigated the physics of the processes of incipient formation, development, and breakdown of vapor-plasma streams formed under the action of high-power (108–109 W/cm2) nanosecond laser pulses on massive metal targets in air. The main theoretical models of the process of laser erosion of metals by nanosecond pulses have been considered. A comparison has been made between the results of experimental and theoretical investigations of the laser erosion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Effect of High-Power Laser Radiation on Metals [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  2. L. I. Mirkin, Physical Principles of Laser Material Processing [in Russian], Izd. MGU, Moscow (1975).

    Google Scholar 

  3. N. N. Rykalin, A. A. Uglov, and A. N. Kokora, Laser Material Processing [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  4. A. M. Prokhorov, V. I. Konov, I. Ursu, and I. N. Mikhéilesku, Laser Radiation Interaction with Metals [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  5. Yu. P. Raizer, Laser Radiation Effect [in Russian], Mir, Moscow (1974).

    Google Scholar 

  6. B. Ya. Lyubov and É. N. Sobol′, Effect of Concentrated Energy Fluxes on Materials [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  7. J. F. Ready, Effects of High-Power Laser Radiation, Academic Press, New York (1971).

    Google Scholar 

  8. E. N. Sobol, Phase Transformations and Ablation in Laser Treated Solids, Wiley, New York (1995).

    Google Scholar 

  9. E. Fogarassy and S. Lazare, Laser Ablation of Electronic Materials, North-Holland, Amsterdam (1992).

    Google Scholar 

  10. S. I. Anisimov and V. A. Khohlov, Instabilities in Laser–Matter Interaction, CRC Press, Boca Raton, Fla (1995).

    Google Scholar 

  11. D. Bäuerle, Laser Processing and Chemistry, Springer, Heidelberg, Berlin (2011).

    Book  Google Scholar 

  12. C. Phipps, Laser Ablation and Its Applications, Springer Science + Business Media, New York (2007).

    Book  Google Scholar 

  13. S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, et al., Matter expansion and crater formation under the action of an ultrashort laser pulse, Zh. Éksp. Tekh. Fiz., 130, No. 8, 212–227 (2006).

    Google Scholar 

  14. V. K. Goncharov, K. V. Kozadaev, and M. V. Pusyrev, The infl uence of ND laser irradiation parameters on dynamics of metal condensed phase propagating near target, in: M. Sosa and J. Franco (Eds.), Engineering Physics and Mechanics: Analyses, Prediction and Applications, Nova Science Publishers, New York (2009).

    Google Scholar 

  15. N. Kumar, S. Dash, A. K. Tyagi, and R. Baldev, Dynamics of plasma expansion in the pulsed laser material interaction, Sadhana (Indian Academy of Science), 25, No. 4, 493–511 (2010).

    Article  Google Scholar 

  16. S. I. Anisimov and B. S. Luk′yanchuk, Selected problems of the laser ablation theory, Usp. Fiz. Nauk, 172, No. 3, 301–333 (2002).

    Article  Google Scholar 

  17. N. D. Arnold, B. S. Luk′yanchuk, N. M. Bityurin, and D. Bäuerle, Modeling of nanosecond-laser ablation: Calculations based on a nonstationary averaging technique (spatial moments), in: Proc. SPIE, 3343, 484–504 (1998).

  18. B. S. Luk′yanchuk, W. Marine, S. I. Anisimov, and G. A. Simakina, Condensation of vapor and nanoclusters formation within the vapor plume, produced by ns-laser ablation of Si, Ge and C, in: Proc. SPIE, 3618, 434–452 (1999).

  19. L. M. Doeswijk, G. Rijnders, and D. H. A. Blank, Pulsed laser deposition: metal versus oxide ablation, Appl. Phys. A, 78, 263–268 (2004).

    Article  Google Scholar 

  20. L. Y. Min′ko and Y. A. Chivel, Investigations of the pulsed laser induced destruction of metals and generation of particles, J. Phys. IV, 175–178 (1994).

  21. I. A. Bufetov, S. B. Kravtsov, and V. B. Fedorov, Thermodynamic parameters of nanosecond plasma on a solid target in the radiation fi eld of high-power neodymium laser harmonics with a sharp leading edge of the pulse, Kvantovaya Élektron., 23, No. 6, 535–538 (1996).

    Google Scholar 

  22. K. S. Gus′kov and S. Yu. Gus′kov, Efficiency of ablation loading and limiting depth of damage of the material irradiated with a high-power laser pulse, Kvantovaya Élektron., 31, No. 4, 305–310 (2001).

    Article  MathSciNet  Google Scholar 

  23. T. V. Kononenko, V. I. Konov, S. V. Garnov, et al., Comparative investigation of the ablation of materials by femtosecond and pico/nanosecond laser pulses, Kvantovaya Élektron., 28, No. 2, 167–172 (1999).

    Google Scholar 

  24. D. Geohegan, A. Puretzky, G. Duscher, and S. Pennycook, Time-resolved imaging of gas-phase nanoparticle synthesis by laser ablation, Appl. Phys. Lett., 72, No 2, 2987–2989 (1998).

    Article  Google Scholar 

  25. V. K. Goncharov and K. V. Kozadaev, Formation of the condensed phase of metals under the action of submicrosecond laser pulses, Inzh.-Fiz. Zh., 83, No. 1, 80–84 (2010).

    Google Scholar 

  26. V. K. Goncharov, K. V. Kozadaev, and D. V. Shchegrikovich, Formation of the condensed phase of metals under the action of intense nanosecond laser pulses, Inzh.-Fiz. Zh., 86, No. 4, 754–759 (2013).

    Google Scholar 

  27. K. V. Kozadaev, Change in the relief of metal targets under the action of submicrosecond high-power-density laser pulses, Perspek. Mater., No. 6, 71–78 (2011).

    Google Scholar 

  28. V. K. Goncharov, K. V. Kozadaev, and D. V. Shchegrikovich, Laser synthesis of optical media with silver nanoparticles by nanosecond pulses in air, Opt. Mem. Neur. Networks (Inform. Opt.), 20, No. 4, 255–259 (2011).

    Article  Google Scholar 

  29. V. K. Goncharov, K. V. Kozadaev, and D. V. Shchegrikovich, Investigation of noble metal colloidal systems formed by laser synthesis in air, Adv. Opt. Technol., 2012. Article ID 907292. doi: 10.1155/2012/907292.

  30. V. K. Goncharov, K. V. Kozadaev, D. I. Shiman, and D. V. Shchegrikovich, Formation and investigation of optical media containing gold nanoparticles, Inzh.-Fiz. Zh., 85, No. 1, 38–42 (2012).

    Google Scholar 

  31. V. K. Goncharov, K. V. Kozadaev, and D. I. Shiman, Formation and complex diagnostics of the spectral-morphological parameters of the nanosized phase of silver in a polymer film, Zh. Prikl. Spektrosk., 77, No. 5, 732–736 (2010).

    Google Scholar 

  32. K. V. Kozadaev, Laser synthesis of Ag island-shaped nanostructures in air, in: In: Proc. NAP, 2, No 3 (2013). 03PISERE05.

  33. N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, Spatially, temporally and spectrally resolved measurement of laser-induced plasma in air, Appl. Phys. B, 86, 605–614 (2011).

    Article  Google Scholar 

  34. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, et al., The role of plasma in the ablation of materials by ultrashort laser pulses, Kvantovaya Élektron., 31, No. 5, 378–382 (2001).

    Article  Google Scholar 

  35. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, et al., The role of low-threshold breakdown of air in the ablation of materials by short laser pulses, Tr. Inst. Obshsch. Fiz. im. A. M. Prokhorova, 60, 13–29 (2004).

    Google Scholar 

  36. V. K. Goncharov, Action of high-energy neodymium laser radiation pulses of different space-time forms on metals, Inzh.-Fiz. Zh., 74, No. 5, 87–97 (2001).

    Google Scholar 

  37. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Energy efficiency of femtosecond laser ablation of refractory metals, Zh. Prikl. Spektrosk., 77, No. 4, 604–611 (2010).

    Google Scholar 

  38. E. Y. Loktionov, A. V. Ovchinnicov, Y. Y. Protasov, and D. S. Sitnicov, Experimental investigation on spectral-energy efficiency of femtosecond laser ablation of metals, Plasma Phys. Rep., 37, No. 13, 1208–1214 (2011).

    Article  Google Scholar 

  39. J. Byskov-Nielsen, J.-M. Savolainen, M. S. Christensen, and P. Balling, Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations, Appl. Phys. A, 103, 447–453 (2011).

    Article  Google Scholar 

  40. I. Mingareev and A. Horn, Time-resolved investigations of plasma and melt ejections of metals by pump-probe shadowgraphy, Appl. Phys. A, 92, 917–920 (2008).

    Article  Google Scholar 

  41. I. K. Kikoin, Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  42. A. Evtushenko, E. Ivanik, and K. Rozhnyakovskii, On one method for determining the effective absorption coefficient under pulsed laser irradiation of metals, Inzh.-Fiz. Zh., 76, No. 5, 10–15 (2003).

    Google Scholar 

  43. A. F. Banishev and E. A. Balykina, Damage of the silicon and copper surface under pulsed and pulsed-periodic YAG-Nd laser irradiation, Kvantovaya Élektron., 24, No. 6, 557–559 (1997).

    Google Scholar 

  44. S. I. Anisimov, V. A. Gal′burt, M. F. Ivanov, et al., On the theory of laser interaction with metals, Zh. Tekh. Fiz., 49, No. 3, 512–517 (1979).

    Google Scholar 

  45. V. K. Goncharov, K. V. Kozadaev, V. V. Makarov, and D. V. Shchegrikovich, Proceeding of erosion processes in the near-surface region of metals irradiated with intense nanosecond laser pulses, Inzh.-Fiz. Zh., 86, No. 4, 747–753 (2013).

    Google Scholar 

  46. V. K. Goncharov, K. V. Kozadaev, and D. V. Shchegrikovich, Onset of condensation in erosion torches of metals irradiated with high-intensity submicrosecond laser pulses, Inzh.-Fiz. Zh., 84, No. 4, 723–728 (2011).

    Google Scholar 

  47. S. I. Anisimov, N. A. Inogamov, Y. V. Petrov, and V. A. Khohlov, Interaction of short laser pulses with metals at moderate intensities, Appl. Phys. A, 92, 939–943 (2008).

    Article  Google Scholar 

  48. V. K. Goncharov, K. V. Kozadaev, and D. V. Shchegrikovich, Dynamics of the optical characteristics of erosion laser torches of metals irradiated with intense nanosecond pulses under atmospheric conditions, Zh. Prikl. Spektrosk., 80, No. 3, 409–416 (2013).

    Google Scholar 

  49. L. T. Sukhov, Laser Spectral Analysis [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  50. J. Singh and S. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier, Amsterdam (2007).

    Google Scholar 

  51. Ya. B. Zel′dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  52. A. N. Chumakov, V. V. Efremov, N. A. Bosak, et al., Radiation of laser microplasma formations in the visible and IR spectral regions, Kvantovaya Élektron., 21, No. 8, 773–777 (1994).

    Google Scholar 

  53. M. P. Chuchman and A. K. Shuaibov, Emission characteristics and properties of a laser-plume germanium plasma, Plasma Phys. Rep., 34, No. 4, 306–311 (2008).

    Article  Google Scholar 

  54. V. K. Unnikrishnan, A. Kamlesh, V. B. Kartha, et al., Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana J. Phys., 74, No. 6, 983–993 (2010).

    Article  Google Scholar 

  55. M. Kubkowska, P. Gasior, M. Rosinski, et al., Characterization of laser-produced tungsten plasma using optical spectroscopy method, Eur. Phys. J., 54, 463–466 (2009).

    Google Scholar 

  56. A. K. Shuaibov, M. P. Chuchman, and L. L. Shimon, Spectroscopic diagnostics of the laser erosion plasma of lead, Tech. Phys. Lett., 30, No. 12, 1042–1044 (2004).

    Article  Google Scholar 

  57. M. Kuwata, B. Luk′yanchuk, and T. Yabe, Nanoclusters formation within the vapor plume, produced by ns-laser ablation: Effect of the initial density and pressure distributions, in: Proc. SPIE, 4065, 441–451 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kozadaev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 87, No. 3, pp. 682–693, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozadaev, K.V. Physics of Laser-Induced Plasma Streams Under Irradiation of Metals with Nanosecond Laser Radiation Pulses at Atmospheric Pressure. J Eng Phys Thermophy 87, 704–714 (2014). https://doi.org/10.1007/s10891-014-1063-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-014-1063-8

Keywords

Navigation