Skip to main content
Log in

Comparison of the Results of Experimental Investigations of a Vibrofluidized Bed with Calculations by a Granular Gas Hydrodynamic Model

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A comparison has been made between the results of numerical calculations of the vibrofluidization process of relatively large dolomite and fi ne glass particles by a granular gas hydrodynamic model and the corresponding experimental data. Good agreement is observed between the numerical calculations and the experimental data in the case of vibrofluidization of relatively thin layers of the above materials. On the basis of the obtained results, the field of use of the granular gas hydrodynamic model for describing the vibrofluidization process has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. G. Loktionova, Dynamics of Vibrational Technological Processes and Machines for Processing Inhomogeneous Granular Media, Doctoral Dissertation (in Engineering), Kursk (2008).

  2. V. G. Lyul’ko, K. K. Shugai, A. V. Lyul′ko, and S. A. Malofeeva, Development of the thermodynamic technology in a vibrating bed of powder microcomposites, Vestn. DGTU, 8, No. 1 (36), 13–30 (2008).

    Google Scholar 

  3. É. É. Lavendel (Ed.), Vibrations in Engineering, Handbook in 6 vols., Vol. 4, Vibrational Processes and Machines [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  4. I. I. Blekhman, Vibrational Mechanics [in Russian], Fizmatlit, Moscow (1994).

    Google Scholar 

  5. A. S. Bodrova, Kinetic Theory of Nonequilibrium Processes in Systems of Dissipative Particles, Candidate′s Dissertation (in Physics and Mathematics), MGU, Moscow (2010).

    Google Scholar 

  6. T. W. Martin, J. M. Huntley, and R. D. Wildman, Hydrodynamic model for a vibrofluidized granular bed, J. Fluid Mech., 535, 325–345 (2005).

    Article  MATH  Google Scholar 

  7. R. D. Wildman, T. W. Martin, J. M. Huntley, et al., Experimental investigation and kinetic-theory-based model of a rapid granular shear fl ow, J. Fluid Mech., 602, 63–79 (2008).

    MATH  Google Scholar 

  8. H. Iddir and H. Arastoopour, Modeling of multitype particle flow using the kinetic theory approach, AIChE J., 51, No. 6, 1620–1632 (2005).

    Article  Google Scholar 

  9. D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic Press, Boston (1994).

    MATH  Google Scholar 

  10. Haitao Xu, Collisional Granular Flows with and without Gas Interactions in Microgravity, Ph.D Thesis, Cornell University (2003).

  11. N. S. Orlova, Comparison of calculations by a two-liquid vibrofluidized bed model with experimental data, Inzh.-Fiz. Zh., 85, No. 6, 1202–1207 (2012).

    Google Scholar 

  12. A. A. Revo, N. S. Orlova, G. I. Sverdlik, and E. S. Kamenetskii, Investigation of the mathematical “large particle gas” model for the vibrofluidization process, Tr. Molod. Uchen., No. 3, 11–16 (2010).

    Google Scholar 

  13. G. I. Sverdlik, A. A. Revo, E. S. Kamenetskii, and N. S. Orlova, Comparison of the results of experiments and mathematical modeling of a vibrofluidized bed, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg., Tekh. Nauki, No.1, 24–27 (2011).

  14. F. H. Harlow and A. A. Amsden, Numerical calculation of multiphase flow, J. Comput. Phys., 17, 19–52 (1975).

    Article  MATH  Google Scholar 

  15. N. S. Orlova, Testing of two vibrofluidized bed models, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg., Tekh. Nauki, No. 2, 42–45 (2012).

  16. W. Kroll, Über das Verhalten von Schuttguf in lotrecht schwingenden Gefaben, Forschung, Bd. 20, Heft 1, 2–15 (1954).

  17. G. I. Sverdlik, A. A. Revo, and E. S. Kamenetskii, Characteristic features of the slipping of a loose material from an inclined vibrating shelf, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg., Tekh. Nauki, No. 4, 151–152 (2008).

  18. N. I. Gel’perin and V. G. Ainshtein, Fluidization [in Russian], Znanie, Moscow (1968).

    Google Scholar 

  19. Y. Tatemoto, Y. Mawatari, and K. Noda, Numerical simulation of cohesive particle motion in vibrated fluidized bed, Chem. Eng. Sci., 60, 5010–5021 (2005).

    Article  Google Scholar 

  20. A. Goldshtein, M. Shapiro, L. Moldavsky, and M. Fichman, Mechanics of collisional motion of granular materials, Part 2. Wave propagation through vibrofluidized granular layers, J. Fluid Mech., 287, 349–382 (1995).

    Article  Google Scholar 

  21. R. V. Daleffe, M. C. Ferreira, and J. T. Freire, Analysis of the effect of particle size distribution on the fluid dynamic behavior and segregation patterns of fluidized, vibrated and vibrofluidized beds, Asia-Pac. J. Chem. Eng., 2, 3–11 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Orlova.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 87, No. 2, pp. 429–435, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, N.S. Comparison of the Results of Experimental Investigations of a Vibrofluidized Bed with Calculations by a Granular Gas Hydrodynamic Model. J Eng Phys Thermophy 87, 443–449 (2014). https://doi.org/10.1007/s10891-014-1030-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-014-1030-4

Keywords

Navigation