Skip to main content
Log in

Reflection and Transmission Between Two Micropolar Thermoelastic Half-Spaces with Three-Phase-Lag Model

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The present investigation is concerned with the reflection and transmission of plane waves at an interface between two micropolar thermoelastic half-spaces with different micropolarity and thermoelastic properties. The three-phaselag theory of thermoelasticity developed by Roychoudhuri is used to study the phenomena mentioned. The reflection and transmission coefficients of a longitudinal displacement wave, thermal wave, and two coupled transverse displacement and microrotational waves are derived for different incident waves. The amplitude ratios for different reflected and transmitted waves vs. the angle of incidence are calculated numerically for various thermoelasticity models. Their graphical representations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240–253 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. B. Hetnarski and J. Ignaczak, Generalized themoelasticity, J. Therm. Stresses, 22, 451–476 (1999).

    Article  MathSciNet  Google Scholar 

  3. H. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  MATH  Google Scholar 

  4. A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elast., 2, 1–7 (1972).

    Article  MATH  Google Scholar 

  5. R. B. Hetnarski and J. Ignaczak, Solution-like waves in a low temperature nonlinear thermoelastic solid, Int. J. Eng. Sci., 4, 1767–1787 (1996).

    Article  MathSciNet  Google Scholar 

  6. A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elast., 31, 189–208 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Soc. Lond., 432, 171–194 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stresses, 15, 253–264 (1992).

    Article  MathSciNet  Google Scholar 

  9. D. Y. Tzou, A unifi ed fi eld approach for heat conduction from micro to macroscales, ASME J. Heat Transf., 117, 8–16 (1995).

    Article  Google Scholar 

  10. D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, Appl. Mech. Rev., 51, 705–729 (1998).

    Article  Google Scholar 

  11. S. K. Roychoudhuri, One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects, J. Mech. Mater. Struct., 2, 489–503 (2007).

    Article  Google Scholar 

  12. S. K. Roychoudhuri, On a thermoelastic three-phase-lag model, J. Therm. Stresses, 30, 231–238 (2007).

    Article  Google Scholar 

  13. A. C. Eringen, Linear theory of micropolar elasticity, J. Appl. Math. Mech., 15, 909–923 (1966).

    MATH  MathSciNet  Google Scholar 

  14. A. C. Eringen, Foundations of micropolar thermoelasticity, International Centre for Mechanical Science, Udline Course and Lectures, 23, Springer-Verlag, Berlin (1970).

    Book  Google Scholar 

  15. A. C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids, Springer-Verlag, Berlin (1999).

    Book  MATH  Google Scholar 

  16. W. Nowacki, Theory of Asymmetric Elasticity, Pergamon, Oxford (1986).

    MATH  Google Scholar 

  17. S. Dost and B. Taborrok, Generalized micropolar thermoelasticity, Int. J. Eng. Sci., 16, 173–178 (1978).

    Article  MATH  Google Scholar 

  18. D. S. Chandrasekharaiah, Heat flux dependent micropolar thermoelasticity, Int. J. Eng. Sci., 24, 1389–1395 (1986).

    Article  MATH  Google Scholar 

  19. E. Boschi and D. Iesan, A generalized theory of linear micropolar thermoelasticity, Meccanica, 7, 154–157 (1973).

    Article  Google Scholar 

  20. S. K. Tomar and M. L. Gogna, Reflection and refraction of a longitudinal microrotational wave at an interface between two micropolar elastic solids in welded contact, J. Appl. Math. Mech., 30, 1637–1646 (1992).

    MATH  Google Scholar 

  21. S. K. Tomar and M. L. Gogna, Reflection and refraction of a longitudinal displacement wave at an interface between two micropolar elastic solids in welded contact, J. Acoust. Soc. Am., 97, 827–830 (1995).

    Google Scholar 

  22. S. K. Tomar and M. L. Gogna, Reflection and refraction of a coupled transverse and microrotational waves at an interface between two different micropolar elastic solids in welded contact, J. Appl. Math. Mech., 30, 485–496 (1995).

    Google Scholar 

  23. S. Y. Hsia and J. W. Cheng, Longitudinal plane waves propagation in elastic micropolar porous media, Jpn. J. Appl. Phys., 45, 1743–1748 (2006).

    Article  Google Scholar 

  24. S. Y. Hsia, S. M. Chiu, C. C. Su, and T. H. Chen, Propagation of transverse waves in elastic micropolar porous semispaces, Jpn. J. Appl. Phys., 46, 7399–7405 (2007).

    Article  Google Scholar 

  25. R. Kumar and M. Barak, Wave propagation in liquid-saturated porous solid with micropolar elastic skeleton at boundary surface, Appl. Math. Mech., 28, 337–349 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Kumar, N. Sharma, and P. Ram, Reflection and transmission of micropolar elastic waves at an imperfect boundary, Multidiscip. Model. Mater. Struct., 4, 15–36 (2008).

    Google Scholar 

  27. R. Kumar, N. Sharma, and P. Ram, Interfacial imperfection on reflection and transmission of plane waves in anisotropic micropolar media, Theor. Appl. Fract. Mech., 49, 305–312 (2008).

    Article  Google Scholar 

  28. R. Kumar, M. Kaur, and S. C. Rajvanshi, Wave propagation at an interface of heat conducting micropolar solid and fluid media, Appl. Math. Mech., 32, 881–902 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Quintanilla, A well posed problem for the dual phase-lag heat conduction, J. Therm. Stresses, 31, 260–269 (2008).

    Article  Google Scholar 

  30. R. Quintanilla, Spatial behaviour of solutions of the three-phase-lag heat equation, Appl. Math. Comput., 213, 153–162 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Kanoria and S. H. Mallik, Generalized thermoelastic interaction due to periodically varying heat source with threephase-lag effect, Eur. J. Mech. A/Solids, 29, 695–703 (2010).

    Article  Google Scholar 

  32. S. Mukhopadhyay and R. Kumar, Analysis of phase-lag effects on wave propagation in a thick plate under axisymmetric temperature distribution, Acta Mech., 210, 331–334 (2010).

    Article  MATH  Google Scholar 

  33. S. Mukhopadhyay, S. Kothari, and R. Kumar, A domain of influence theorem for thermoelasticity with dual phase-lags, J. Therm. Stresses, 34, 923–933 (2011).

    Article  Google Scholar 

  34. R. Kumar and V. Chawla, A study of plane wave propagation in anisotropic three-phase-lag and two-phase-lag model, Int. Commun. Heat Mass Transf., 38, 456–461 (2011).

    Article  Google Scholar 

  35. S. Banik and M. Kanoria, Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity, Appl. Math. Mech., 33, 483–498 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  36. A. C. Eringen, Plane waves in nonlocal micropolar elasticity, Int. J. Eng. Sci., 22, 1113–1121 (1984).

    Article  MATH  Google Scholar 

  37. R. S. Dhaliwal and A. Singh, Dynamic Coupled Thermoelasticity, Hindustan Publication Corporation, New Delhi, India (1980).

    Google Scholar 

  38. R. D. Gauthier, Experimental Investigations on Micropolar Media, World Scientific Publishing Co., Pte. Ltd., Singapore (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaur.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 87, No. 2, pp. 290–302, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kaur, M. & Rajvanshi, S.C. Reflection and Transmission Between Two Micropolar Thermoelastic Half-Spaces with Three-Phase-Lag Model. J Eng Phys Thermophy 87, 295–307 (2014). https://doi.org/10.1007/s10891-014-1013-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-014-1013-5

Keywords

Navigation