Skip to main content
Log in

Computer Simulation of Porous Layers Based on the Method of Discrete Elements

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

We propose a numerical suspension sedimentation and filtration model based on the dynamic variant of the method of discrete elements. The model reflects the behavior of particles at the micro- and mesolevels (formation of pores, arches, and flakes) and qualitatively reproduces macroeffects: sedimentation of a layer of particles and slow processes of the shrinkage of this layer, as well as its compaction under the gravity of particles and of an externally applied force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Zhuzhikov, Filtration: Theory and Practice of the Separation of Suspensions [in Russian], Izd. “Khimiya,” Moscow (1971).

  2. R. J. Wakeman and E. S. Tarleton, Filtration: Equipment Selection, Modeling and Process Simulation, Elsevier Advanced Technology, Great Britain (1999).

    Google Scholar 

  3. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, Discrete particle simulation of particulate systems: Theoretical development, Chem. Eng. Sci., 62, Issue 13, 3378–3396 (2007).

    Article  Google Scholar 

  4. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, Discrete particle simulation of particulate systems: A review of major applications and findings, Chem. Eng. Sci., 63, Issue 23, 5728–5770 (2008).

    Article  Google Scholar 

  5. J. Dueck and V. I. Yugov, Modeling of the structure of a bulk layer, Inzh.-Fiz. Zh., 78, No. 2, 36–43 (2005).

    Google Scholar 

  6. J. Dueck, E. N. D’yachenko, and L. L. Min’kov, Modeling of a random packing of spheres, Fiz. Mezomekh., 9, No. 4, 63–69 (2006).

    Google Scholar 

  7. Th. Neesse, J. Dueck, and E. Djatchenko, Simulation of filter cake porosity in solid/liquid separation, Powder Technol., No. 193, 332–336 (2009).

  8. S. Timoshenko and J. N. Godier, Theory of Elasticity, McGraw-Hill Book Company (1951).

  9. L. D. Landau and E. M. Lifshits, Elasticity Theory [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  10. P. A. Moysey and M. R. Thompson, Modelling the solids inflow and solids conveying of single-screw extruders using the discrete element method, Powder Technol., No. 153, 95–107 (2005).

    Google Scholar 

  11. A. Ananda, J. S. Curtisa, and C. R. Wassgrenb, Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM), Chem. Eng. Sci., No. 63, 5821–5830 (2008).

  12. L. Vu-Quoc, X. Zhang, and O. R. Walton, A 3-D discrete-element method for dry granular flows of ellipsoidal particles, Comput. Methods Appl. Mech. Eng., No. 187, 483–528 (2000).

    Google Scholar 

  13. H. Kruggel-Emden, E. Simsek, and S. Rickelt, Review and extension of normal force models for the discrete element method, Powder Technol., 171, Issue 3, 157–173 (2007).

    Article  Google Scholar 

  14. J. Israelachvili, Intermolecular and Surface Forces, Academic Press, San Diego (1995).

    Google Scholar 

  15. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967).

  16. V. A. Volkov, Colloid. Chemistry [in Russian ], MGTU im. A. N. Kosygina, Moscow (2001).

  17. I. M. Krieger, Rheology of monodisperse lattices, Adv. Colloid Interface Sci., No 3, 111–136 (1972).

  18. S. Siiriae and Y. Jouko, Particle packing simulation based on Newtonian mechanics, Powder Technol., No. 174, 82–92 (2007).

  19. J. Dueck, D. Purevjav, and D. Yu. Kilimnik, A contribution to the theory of porosity of fine-grained sediments, Inzh.-Fiz. Zh., 77, No. 1, 77–85 (2004).

    Google Scholar 

  20. R. Hogg, Flocculation and dewatering, Int. J . Miner. Process, No. 58, 223–236 (2000).

  21. E. K. Obiakor and R. L. Whitmore, Settling phenomena in flocculated suspension, Rheol. Acta, No. 6, 353–359 (1969).

    Google Scholar 

  22. D. Purevjav, Packing Characteristics of Fine -Grained Filter Cake and Sediment, PhD Dissertation, University Erlangen: Der Andere Verlag (2006).

  23. R. I. Nigmatulin, Principles of the Mechanics of Heterogeneous Media [in Russian], Mir, Moscow (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. D’yachenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 6, pp. 1237–1248, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’yachenko, E.N., Dueck, J.G. Computer Simulation of Porous Layers Based on the Method of Discrete Elements. J Eng Phys Thermophy 86, 1315–1327 (2013). https://doi.org/10.1007/s10891-013-0956-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0956-2

Keywords

Navigation