Skip to main content
Log in

Influence of droplet distribution in a “water slug” on the temperature and concentration of combustion products in its wake

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A numerical study has been made of the influence of the droplet distribution in a “water slug” on the integral characteristics of heat and mass transfer (temperature and concentration of the gases in its wake) in motion through high-temperature combustion products of typical combustible wood. Limiting values of the parameters characterizing the position of the droplets relative to the neighboring droplets in the “water slug” at which minimum temperatures and concentrations of the combustion products in its wake are attained under the conditions of the greatest possible completeness of water evaporation, have been established. It has been shown that a series–parallel droplet distribution in the “water slug” is expedient for efficient action on the high-temperature gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Khasanov and E. A. Moskvilin, Aviation methods of quenching large forest fires, in: Problems of Burning and Quenching Fires at the Turn of the Centuries, Proc. 15th Sci.-Pract. Conf., Pt. 1, VNIIPO, Moscow (1999), pp. 300–301.

  2. V. S. Gorshkov, E. A. Moskvilin, and I. R. Khasanov, Estimation of the parameters of quenching forest fires by aviation means, in: Problems of Predicting Extraordinary Situations and of Their Sources, Volume of Abstracts of Sci.-Pract. Conf., IITs VNII GOChS, Moscow (2001), pp. 34–35.

  3. A. V. Karpyshev, A. L. Dushkin, and N. N. Ryazantsev, Development of a highly efficient universal fire extinguisher on the basis of generating jets of finely pulverized fire-extinguishing substances, Pozharovzryvobezopasnost', 16, No. 2, 69–73 (2007).

    Google Scholar 

  4. D. Gaev, A. V. Ershov, V. P. Prokhorov, A. V. Karpyshev, and A. L. Dushkin, A system of fire protection for the subway car cabin on the basis of high technologies, Probl. Bezop. Chrezv. Situats., No. 3, 67–72 (2009).

  5. A. L. Dushkin and S. E. Lovchinskii, Interaction of a combustible fluid flame with finely pulverized water, Pozharovzryvobezopasnost', 20, No. 11, 53–55 (2011).

    Google Scholar 

  6. V. V. Sokovikov, A. N. Tugov, V. V. Grishin, and V. N. Kamyshev, Automatic water fire-fighting using finely pulverized water at electric power stations, Énergetik, No. 6, 37–38 (2008).

  7. A. A. Salamov, Modern fire-fighting high-pressure “water fog” system, Énergetik, No. 3, 16–18 (2012).

  8. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Numerical estimation of the optimum size of water droplets under conditions of indoor water atomization by fire-quenching means, Pozharovzryvobezopasnost', 21, No. 5, 74–78 (2012).

    Google Scholar 

  9. D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Numerical investigation of heat and mass transfer in motion of a tandem of water droplets in a high-temperature gas medium, Tepl. Prots. Tekh., 4, No. 12, 531–538 (2012).

    Google Scholar 

  10. P. A. Strizhak, Numerical investigation of the conditions of water droplet collection evaporation during motion in a high-temperature gas medium, Pozharovzryvobezopasnost', 21, No. 8, 26–31 (2012).

    Google Scholar 

  11. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Heat and mass transfer in the process of movement of water drops in a high-temperature gas medium, Inzh.-Fiz. Zh., 86, No. 1, 59–65 (2013).

    Google Scholar 

  12. R. S. Volkov, O. V. Vysokomornaya, and P. A. Strizhak, Numerical investigation of the conditions of interaction of a dispersed combustion phlegmatizer with high-temperature combustion products, Bezopasn. Truda Promyshl., No. 10, 74–79 (2012).

  13. G. G. Andreev, D. O. Glushkov, V. F. Panin, and P. A. Strizhak, Heat and mass transfer during interaction of a dispersed combustion phlegmatizer with high-temperature combustion products, Butlerovsk. Soobshch., 31, No. 8, 86–94 (2012).

    Google Scholar 

  14. P. A. Strizhak, Numerical analysis of the process of evaporation of a droplet moving in a water jet through high-velocity combustion products, Pozharovzryvobezopasnost', 21, No. 9, 17–23 (2012).

    Google Scholar 

  15. N. V. Baranovskii and G. V. Kuznetsov, Prediction of the Onset of Forest Fires and of Their Environmental Consequences [in Russian], Izd. Sib. Otd. RAN, Novosibirsk (2009).

    Google Scholar 

  16. V. V. Dubovitskii, A. M. Podvysotskii, and A. A. Shraiber, Measuring natural oscillation periods for droplets and twocomponent particles, Inzh.-Fiz. Zh., 58, No. 5, 804–808 (1990).

    Google Scholar 

  17. E. H. Trinh, R. G. Holt, and D. B. Thiessen, The dynamics of ultrasonically levitated drops in an electric field, Phys. Fluids, 8, No. 1, 43–61 (1996).

    Article  Google Scholar 

  18. L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  19. S. S. Kutateladze, Principles of Heat Transfer Theory [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  20. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of Heat and Mass Transfer Processes [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  21. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  22. G. V. Kuznetsov and P. A. Strizhak, Ignition of liquid hydrocarbon fuels by an ignited solitary particle, Izv. Tomsk. Politekh. Univ., 316, No. 4, 5–9 (2008).

    Google Scholar 

  23. T. M. Muratova and D. A. Labuntsov, Kinetic analysis of evaporation and condensation processes, Teplofiz. Vys. Temp., 7, No. 5. 959–967 (1969).

    Google Scholar 

  24. O. Knake and I. N. Stranskii, Evaporation mechanism, Usp. Fiz. Nauk, 68, No. 2 (1959).

  25. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  26. G. V. Kuznetsov and P. A. Strizhak, Transient heat and mass transfer at the ignition of vapor and gas mixture by a moving hot particle, Int. J. Heat Mass Transf., 53, Issues 5–6, 923–930 (2010).

    Article  MATH  Google Scholar 

  27. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], OOO “Stars,” Moscow (2006).

  28. V. N. Yurenev and P. D. Lebedev (Eds.), Heat Engineering Handbook [in Russian], Vols. 1, 2, Énergiya, Moscow (1975).

  29. A. P. Kryukov and V. Yu. Levashov, About evaporation–condensation coefficients on the vapor–liquid interface of high thermal conductivity matters, Int. J. Heat Mass Transf., 54, Nos. 13–14, 3042–3048 (2011).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Strizhak.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 4, pp. 839–848, July–August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strizhak, P.A. Influence of droplet distribution in a “water slug” on the temperature and concentration of combustion products in its wake. J Eng Phys Thermophy 86, 895–904 (2013). https://doi.org/10.1007/s10891-013-0909-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0909-9

Keywords

Navigation