Skip to main content
Log in

Combustion of heterogeneous systems with a stochastic spatial structure near the propagation limits

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Extinction of a heterogeneous reactant mixture in the vicinity of thermal and concentration limits of propagation is considered. The consideration is based on an analysis of analytical solutions of combustion-theory problems and on their comparison with both the results of mathematical modeling and a number of experimental works on self-propagating high-temperature synthesis. It is shown that solid-phase-combustion models based on the approximation of a continuous medium are only applicable away from the extinction limits. It is demonstrated that it is fluctuations of the spatial reactant distribution that play a decisive role on the limit of propagation of a combustion wave; these fluctuations must be allowed for, among other factors, when self-sustaining combustion waves are investigated. A percolation model that enables one to explain a number of distinctive features found in the behavior of a combustion wave near the propagation limit is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Dovzhenko, S. V. Maklakov, I. É. Rumanov, and É. N. Rumanov, Autowaves in the near-threshold medium, Zh. Éksp. Teor. Fiz., 122, No. 5, 1125–1132 (2002).

    Google Scholar 

  2. A. Yu. Dovzhenko and É. N. Rumanov, Behavior of autowaves near the threshold of propagation with fast diffusion of activator, Zh. Éksp. Teor. Fiz., 125, No. 2, 406–413 (2004).

    Google Scholar 

  3. A. Yu. Dovzhenko, M. A. Dovzhenko, L. B. Mashkinov, and É. N. Rumanov, Critical point of an exothermic reactor, Dokl. Ross. Akad. Nauk, 388, No. 2, 181–185 (2003).

    MATH  Google Scholar 

  4. S. P. Fedotov and M. V. Tret’yakov, Stationary regimes of heterogeneous chemical reaction in the presence of external noise, Khim. Fiz., 7, No. 11, 1533–1537 (1988).

    Google Scholar 

  5. M. V. Tret’yakov and S. P. Fedotov, Stationary regimes of heterogeneous chemical reaction in the presence of white Poisson noise, Khim. Fiz., 9, No. 2, 252–257 (1990).

    Google Scholar 

  6. A. G. Merzhanov and É. N. Rumanov, Nonlinear effects in macroscopic kinetics, Usp. Fiz. Nauk, 151, No. 4, 553–593 (1987).

    Article  Google Scholar 

  7. A. G. Merzhanov and E. N. Rumanov, Physics of reaction waves, Rev. Mod. Phys., 71, 1173–1182 (1999).

    Article  Google Scholar 

  8. Ya. B. Zel’dovich, The theory of the limit for propagation of silent flame, Zh. Éksp. Teor. Fiz., 11, No. 1, 159–169 (1941).

    Google Scholar 

  9. P. S. Grinchuk, Propagation of combustion wave near the classical limits of extinction, in: Heat and Mass Transfer–2012: Volume of collected papers of the Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2013), pp. 128–132.

  10. P. S. Grinchuk and O. S. Rabinovich, Percolation phase transition in combustion of heterogeneous mixtures, Fiz. Goreniya Vzryva, 40, No. 4, 41–53 (2004).

    Google Scholar 

  11. O. S. Rabinovich, P. S. Grinchuk, B. B. Khina, and A. V. Belyaev, Percolation Combustion: Is It Possible in SHS? Int. J. SHS, 11, No. 3, 257–270 (2002).

    Google Scholar 

  12. M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett., 85, No. 19, 4104–4107 (2000).

    Article  Google Scholar 

  13. Sh. Ma, Modern Theory of Critical Phenomena [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  14. L. D. Laudau and E. M. Lifshits, Statistical Physics [in Russian], Pt. 1, Nauka, Moscow (1976).

  15. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  16. I. K. Kamilov, A. K. Murtazaev, and Kh. K. Aliev, Investigation of phase transitions and critical phenomena by Monte Carlo methods, Usp. Fiz. Nauk, 169, No. 7, 773–795 (1999).

    Article  Google Scholar 

  17. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed., Taylor & Francis, London (1995).

    MATH  Google Scholar 

  18. P. S. Grinchuk, O. S. Rabinovich, and N. V. Pavlyukevich, Influence of the random structure of an initial material on the processes of self-propagating high-temperature synthesis in thin films, Inzh.-Fiz. Zh., 77, No. 3, 82–92 (2004).

    Google Scholar 

  19. A. R. Sarkisyan, S. K. Dolukhanyan, I. P. Borovinskaya, and A. G. Merzhanov, Some laws governing the combustion of mixtures of transition metals with silicon and synthesis of silicides, Fiz. Goreniya Vzryva, 14, No. 3, 49–55 (1978).

    Google Scholar 

  20. A. É. Grigoryan, A. S. Rogachev, A. E. Sychev, and E. A. Levashov, SHS and formation of the structure of composite materials in three-component systems Ti–C, Ti–Si–N, and Ti–B–N, Ogneup. Tekh. Keram., No. 11, 7–11 (1999).

    Google Scholar 

  21. N. P. Novikov, I. P. Borovinskaya, and A. G. Merzhanov, Dependence of the composition of products and rate of combustion in metal–boron systems on the ratio of reagents, Fiz. Goreniya Vzryva, 10, No. 2, 201–206 (1974).

    Google Scholar 

  22. A. A. Shidlovskii and V. V. Gorbunov, Investigation of the process of combustion of nickel–aluminum thermites, Fiz. Goreniya Vzryva, 18, No. 4, 40–42 (1982).

    Google Scholar 

  23. V. M. Filatov and Yu. S. Naiborodenko, On the infl uence of intermetallide reactions on combustion of nickel–aluminum thermites, in: Proc. 9th All-Union Symp. On Combustion and Explosion. Chemical Physics of the Processes of Combustion and Explosion, Inst. Khim. Fiz., Chernogolovka (1989), pp. 37–41.

  24. V. G. Ivanov, G. V. Ivanov, and P. V. Lapin, On characteristic features of combustion of aluminum mixed with iodine pentoxide, Fiz. Goreniya Vzryva, 16, No. 6, 101–103 (1980).

    Google Scholar 

  25. S. L. Kharatyan, G. A. Nersisyan, K. G. Alkhazyan, et al., On the mechanism of interaction of magnesium with boron in combustion regime, in: Proc. 8th All-Union Symp. on Combustion and Explosion. Chemical Physics of the Processes of Combustion and Explosion, Inst. Khim. Fiz., Chernogolovka (1986), pp. 8–11.

  26. V. M. Maslov, I. P. Borovinskaya, and M. Kh. Ziatdinov, Combustion of niobium–aluminum and niobium–germanium systems, Fiz. Goreniya Vzryva, 15, No. 1, 49–56 (1979).

    Google Scholar 

  27. Yu. S. Naiborodenko and V. I. Itin, Investigation of the process of gas-free combustion of the powder mixtures of various metals. Influence of the composition of mixtures on the phase composition of the products of combustion and its rate, Fiz. Goreniya Vzryva, 11, No. 5, 734–742 (1975).

    Google Scholar 

  28. T. S. Azatyan, V. M. Mal'tsev, A. G. Merzhanov, and V. A. Seleznev, Some laws governing combustion of titanium–silicon mixtures, Fiz. Goreniya Vzryva, 15, No. 1, 43–49 (1979).

    Google Scholar 

  29. N. Vandewalle and M. Ausloos, Construction and properties of fractal trees with tunable dimension: The interplay of geometry and physics, Phys. Rev. E, 55, No. 1, 94–98 (1997).

    Article  Google Scholar 

  30. V. I. Ermakov, A. G. Strunina, and V. V. Barzykin, Experimental investigation of the effect of heat loss on the process of ignition of gas-free systems by a combustion wave, Fiz. Goreniya Vzryva, 14, No. 6, 36–42 (1978).

    Google Scholar 

  31. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  32. J. Quintanilla, S. Torquato, and R. M. Ziff, Efficient measurement of the percolation threshold for fully penetrable discs, J. Phys. A, 33, No. 42, 399–407 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Grinchuk.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 4, pp. 819–831, July–August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinchuk, P.S. Combustion of heterogeneous systems with a stochastic spatial structure near the propagation limits. J Eng Phys Thermophy 86, 875–887 (2013). https://doi.org/10.1007/s10891-013-0907-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0907-y

Keywords

Navigation