Skip to main content
Log in

Complex optical method of express diagnostics of transparent media containing nanoparticles of noble metals

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A method is proposed for diagnostics of parameters of optically transparent ultrafine media containing particles of noble metals (Au, Ag). In accordance with this method, parameters of small-sized gold and silver particles (their effective diameter, concentration, and size-distribution dispersion) in optically transparent condensed media were investigated using, in combination, the methods of laser probing and two-factor analysis of the surface-plasmon resonance band on the basis of simulation of the dimension and spectral dependences of the efficiency of extinction and scattering of radiation by this medium in accordance with the Mie theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Goncharov, K. V. Kozadaev, and D. V. Shchegrikovich, Laser synthesis and investigation of the spectral– morphological characteristics of aqueous colloids of noble metals (Ag, Au, Pt), Inzh.-Fiz. Zh., 85, No. 4, 725–730 (2012).

    Google Scholar 

  2. V. K. Goncharov, K. V. Kozadaev, and D. I. Shiman, Formation and complex diagnostics of spectral–morphological parameters of the nanosized phase of silver in a polymer film, Zh. Prikl. Spektrosk., 77, No. 5, 732–736 (2010).

    Google Scholar 

  3. V. K. Goncharov, K. V. Kozadaev, D. I. Shiman, and D. V. Shchegrikovich, Formation and investigation of optical media containing gold nanoparticles, Inzh.-Fiz. Zh., 85, No. 1, 38–42 (2012).

    Google Scholar 

  4. O. O. Avadel'karim, Ch. Bai, and S. P. Kapitsa, Nanoscience and nanotechnologies, in: Encyclopedia of the Life Maintenance [in Russian], ID MAGISTR-PRESS, Moscow (2011).

    Google Scholar 

  5. U. Kreibig and M. Volmer, Optical Properties of Metal Clusters, Springer, USA (1993).

    Google Scholar 

  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  7. H. C. Van de Hulst, Light Scattering by Small Particles [Russian translation], Inostr. Lit., Moscow (1961).

    Google Scholar 

  8. V. K. Goncharov, K. V. Kozadaev, and M. V. Puzyrev, Diagnostics of low-dimensional metal structures in transparent condensed media, Élektronika-Info, No. 6, 72–74 (2010).

  9. V. K. Goncharov, K. V. Kozadaev, N. I. Kunitskii, and M. V. Puzyrev, Laser probing of optical media with nanodimensional particles, Inzh.-Fiz. Zh., 78, No. 6, 122–126 (2005).

    Google Scholar 

  10. V. K. Goncharov, V. I. Karaban', A. V. Kolesnik, and I. M. Radyuk, Space-time distribution of liquid drops in an erosion laser jet under the conditions of exposure of a lead target to laser radiation, Kvantovaya Élektron., 15, No. 12, 2575–2577 (1988).

    Google Scholar 

  11. B. G. Ershov, Nanoparticles of metals in aqueous solutions: electronic, optical, and catalytic properties, Ross. Khim. Zh., No. 3, 20–30 (2001).

  12. A. V. Simakin, V. V. Voronov, and G. A. Shafeev, Formation of nanoparticles in the laser ablation of solid bodies in liquids, Tr. Inst. Obshch. Fiz. im. Prokhorova, Ross. Akad. Nauk, 60, 83–107 (2004).

    Google Scholar 

  13. V. S. Burakov, A. V. Butsen', and N. V. Tarasenko, Laser-induced plasma in a liquid for the synthesis of nanoparticles, Zh. Prikl. Spektrosk., 77, No. 3, 416–424 (2010).

    Google Scholar 

  14. V. N. Popok, A. L. Stepanov, and V. B. Odzhaev, Synthesis of silver nanoparticles in glasses by the method of ionic implantation and investigation of their optical properties, Zh. Prikl. Spektrosk., 72, No. 2, 218–223 (2005).

    Google Scholar 

  15. V. A. Bogatyrev, L. A. Dykman, and N. G. Khlebtsov, Method of Synthesis of Nanoparticles with Plasmon Resonance [in Russian], CGU im. N. G. Chernyshevskogo, Saratov (2009).

    Google Scholar 

  16. V. K. Goncharov and K. V. Kozadaev, Formation of the condensed phase of metals exposed to submicrosecond laser pulses, Inzh.-Fiz. Zh., 83, No. 1, 80–84 (2010).

    Google Scholar 

  17. V. S. Burakov, N. V. Tarasenko, A. V. Butsen, et al., Formation of nanoparticles during double-pulse laser ablation of metals in liquids, Eur. Phys. J. Appl. Phys., No. 30, 107–112 (2005).

    Article  Google Scholar 

  18. K. V. Kozadaev, Diagnostics of aqueous colloids of noble metals by simulation of their extinction on the basis of the Mie theory, Zh. Prikl. Spektrosk., 78, No. 5, 742–748 (2011).

    Google Scholar 

  19. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Orlando (1985).

    Google Scholar 

  20. W. Haiss, N. Thanh, J. Aveyard, and D. Fernig, Determination of size and concentration of gold nanoparticles from UV–vis spectra, Anal. Chem., 79, 4215–4221 (2007).

    Article  Google Scholar 

  21. N. G. Khlebtsov, Determination of size and concentration of gold nanoparticles from extinction spectra, Anal. Chem., 80, 6620–6625 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kozadaev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 4, pp. 812–818, July–August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, V.K., Kozadaev, K.V. Complex optical method of express diagnostics of transparent media containing nanoparticles of noble metals. J Eng Phys Thermophy 86, 868–874 (2013). https://doi.org/10.1007/s10891-013-0906-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0906-z

Keywords

Navigation