Skip to main content

Advertisement

Log in

Simulation of the turbulent-energy redistribution in a diluted polymer solution

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A model of transfer of the Reynolds stresses in a turbulent flow of a low-concentration aqueous polymer solution, taking into account the weight of the polymer and its concentration in this solution, is proposed. The influence of a polymer additive in such a solution on the turbulent diffusion and the redistribution of turbulent energy between the Reynolds-stress tensor components was numerically investigated. It is shown that a high-molecular-weight polymer additive in the indicated flow plays a crucial role in changing the intensity of the energy exchange between the turbulent-stress components, which manifests itself as an increase in the anisotropy of the solution and a decrease in the turbulent-energy production and leads to a decrease in the friction drag in the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Hoyt, Recent progress in polymer drag reduction, Colloq. Int. CNRS, No. 233, 193–215 (1975).

    Google Scholar 

  2. B. A. Toms, Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, in: Proc. 1st Int. Congr. Rheol., North Holland, Amsterdam (1949), Vol. 2, p. 135.

  3. V. N. Pilipenko, Influence of additions on near-wall turbulent flows, in: Itogi Nauki Tekhniki, Mekh. Zhidk. Gaza, 15, 156–257 VINITI AN SSSR, Moscow (1980).

  4. P. Peyser and R. C. Little, The drag reduction of dilute polymer solution as function of solvent power, viscosity and temperature, J. Appl. Polym. Sci., 15, No. 11, 2623–2637 (1971).

    Article  Google Scholar 

  5. G. F. Kobets and A. P. Matyukhov, The effect of the physical parameters of polymer solutions on the reduction of drag in turbulent flow, Inzh.-Fiz. Zh., 25, No. 6, 1039–1044 (1973).

    Google Scholar 

  6. P. S. Virk, Drag reduction fundamentals, AIChE J., 21, No. 4, 625–656 (1975).

    Article  Google Scholar 

  7. G. A. Voropaev and N. F. Dimitrieva, Stress tensor of near-wall polymer-solution flows, Visn. Donets. Univ.: Prir. Nauki, No. 2, 150–156 (2008).

  8. V. A. Nikulin, Model of near-wall turbulence in weak solutions of polymers, in: Physical Hydrodynamics [in Russian], Vishcha Shkola, Kiev–Donetsk, (1977), pp. 34–46.

  9. S. Hassid and M. Poreh, A turbulent energy dissipation model for flows with polymer additives, based on the equations of turbulent energy and its dissipation, Trudy Am. Obshch. Inzh.-Mekh.: Teor. Osnovy Inzh. Rasch., 100, No. 1, 232–239 (1978).

    Google Scholar 

  10. I. L. Povkh and A. B. Stupin, On the influence of the elasticity of polymer solutions on the reduction of resistance, Prikl. Mat. Teor. Fiz., No. 5, 63–68 (1972).

    Google Scholar 

  11. G. F. Kobets, Explanation of the Thoms effect by the anisotropy of the viscosity of a solution, Prikl. Mat. Teor. Fiz., No. 1, 107–111 (1969).

  12. G. A. Voropaev and Yu. A. Ptukha, Simulation of Complex Turbulent Flows [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  13. G. A. Voropaev and N. F. Dimitrieva, Asymptotic estimations of the model equation for transfer of turbulent-energy dissipation rate, Visn. Donets. Univ.: Prirod. Nauki, No. 1, 235–240 (2008).

  14. G. A. Voropaev and N. F. Dimitrieva, Model of transfer of Reynolds stresses for turbulent flows of weakly concentrated polymer solutions, Visn. Donets. Univ.: Prirod. Nauki, No. 2, 111–117 (2009).

  15. J. L. Zakin and D. L. Hunston, Mechanical degradation and drag reducing efficiency of dilute solutions of polystyrene, in: Proc. 2nd Int. Conf. Drag Reduct, Cranfield, Cambridge (1977), S5/41, p. 5–54.

  16. M. Walsh, On the Turbulent Flow of Dilute Polymer Solutions, Ph. D. Thesis, Pasadena, California (1967).

  17. A. B. Stupin and P. V. Aslanov, Turbulent structure of flows with friction-reducing additives, Inzh.-Fiz. Zh., 41, No. 5, 809–814 (1981).

    Google Scholar 

  18. P. K. Ptasinski, F. T. M. Nieuwstadt, B. H. A. A. Van Den Brule, and M. A. Hulsen, Experiments in turbulent pipe flow with polymer additives at maximum drag reduction, Flow, Turbul. Combust., 66, 159–182 (2001).

    Article  MATH  Google Scholar 

  19. J. M. J. Den Toonder, M. A. Hulsen, G. D. C. Kuiken, and F. T. M. Nieuwstadt, Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments, J. Fluid Mech., 337, 193–231 (1997).

    Article  Google Scholar 

  20. D. T. Walker and W. G. Tiederman, Turbulent structure in a channel flow with polymer injection at the wall, J. Fluid Mech., 218, 377–403 (1990).

    Article  Google Scholar 

  21. K. Kim, R. J. Adrian, S. Balachandar, and R. Sureshkumar, Dynamics of hairpin vortices and polymer-induced turbulent drag reduction, Phys. Rev. Lett., 100, No. 13, 134504 (2008).

    Article  Google Scholar 

  22. S. Sibilla and A. Baron, Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution, Phys. Fluids, 14, 1123–1136 (2001).

    Article  Google Scholar 

  23. C. D. Dimitropoulos, R. Sureshkumar, A. N. Beris, and R. A. Handler, Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow, Phys. Fluids, 13, No. 4, 1016–1027 (2001).

    Article  Google Scholar 

  24. P. K. Ptasinski, B. J. Boersma, F. T. M. Nieuwstadt, et al., Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms, J. Fluid Mech., 490, 251–291 (2003).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Dimitrieva.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 1, pp. 126–137, January–February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voropaev, G.A., Dimitrieva, N.F. Simulation of the turbulent-energy redistribution in a diluted polymer solution. J Eng Phys Thermophy 86, 131–144 (2013). https://doi.org/10.1007/s10891-013-0813-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0813-3

Keywords

Navigation