Skip to main content
Log in

Influence of Reynolds and Strouhal numbers on the direction of the wave force acting on inclusions in a standing sinusoidal wave

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The inclusion drift in a standing sinusoidal fluid-velocity wave at various Reynolds and Strouhal numbers under the action of the viscous force, the virtual mass force, and the buoyancy force has been investigated. It has been established that at low frequencies the wave force of dense inclusions is directed to the nearest node, and for loose inclusions it is directed to the antinode of the fluid-velocity wave. For a given inclusion density, as the standing wave frequency increases, its threshold value, above which the direction of the wave force reverses, is attained sooner or later. For various Reynolds and Strouhal numbers, the dependences of the squared threshold drag coefficient on the inclusion density number have been found. These dependences show that with increasing Reynolds and Strouhal numbers the threshold value of the squared drag coefficient decreases markedly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. R. F. Ganiev and L. E. Ukrainskii, Nonlinear Wave Mechanics and Technology [in Russian], R&C Dynamics, Moscow (2008).

    Google Scholar 

  3. P. J. Westervelt, The theory of steady forces caused by sound waves, J. Acoust. Soc. Am., 23, No. 4, 312–315 (1951).

    Article  MathSciNet  Google Scholar 

  4. G. Houghton, The behavior of particles in a sinusoidal velocity field, in: Proc. R. Soc. London, Ser. A, 272, No. 3, 33–43 (1962).

  5. P. R. Schoeneborn, The interaction between a single particle and oscillating fluid, Int. J. Multiphase Flow, 2, Issue 3, 307–317 (1975).

    Article  Google Scholar 

  6. V. S. Sorokin, I. I. Blekhman, and V. B. Vasilkov, Motion of a gas bubble in fluid under vibration, Nonlinear Dynamics, DOI 10.1007/s11071-011-9966-9 (2011).

  7. E. V. Visitskii, A. G. Petrov, and M. M. Shunderyuk, Motion of a particle in a viscous fluid due to gravity and vibration in the presence of the Basset force, Prikl. Mat. Mekh., 73, No. 5, 763–775 (2009).

    MathSciNet  Google Scholar 

  8. Yu. A. Nevskii and A. N. Osiptsov, On the role of nonstationary and “hereditary” forces in problems of gravitational convection of suspensions, Vesti Mosk. Univ. Ser. 1: Mat., Mekh., No. 4, 37–44 (2008).

  9. L. King, On the acoustic radiation pressure on spheres, in: Proc. R. Soc. London, Ser. A, 147, No. 861, 212–240 (1934).

  10. K. Yosioka and G. Kawasima, Acoustic radiation pressure on compressible spheres, Acustica, 5, 167–173 (1955).

    Google Scholar 

  11. K. Yosioka, G. Kawasima, and H. Hirano, Acoustic radiation pressure on bubbles and their logarithmic decrement, Acustica, 5, 173–178 (1955).

    Google Scholar 

  12. P. J. Westervelt, The mean pressure and velocity in a plane acoustic wave in a gas, J. Acoust. Soc. Am., 22, No 3, 319–327 (1950).

    Article  MathSciNet  Google Scholar 

  13. P. J. Westervelt, Acoustic radiation pressure, J. Acoust. Soc. Am., 29, No. 1, 26–29 (1957).

    Article  Google Scholar 

  14. L. P. Gor’kov, On the forces acting on a small particle in an acoustic field in an ideal fluid, Dokl. Akad. Nauk SSSR, 140, No. 1, 88–91 (1961).

    Google Scholar 

  15. S. S. Dukhin, Theory of the drift of an aerosol particle in a standing sound wave, Kolloid. Zh., 22, No. 1, 128–130 (1960).

    Google Scholar 

  16. L. A. Crum and A. I. Eller, Motion of bubbles in a stationary sound field, J. Acoust. Soc. Am., 48, No. 1(2), 181–189 (1970).

    Article  Google Scholar 

  17. H. Czyz, On the concentration of aerosol particles by means of drift forces in a standing wave field, Acustica, 70, 23–28 (1990).

    Google Scholar 

  18. H. Czyz, The aerosol particle drift in a standing wave field, Arch. Acoust., 12, Nos. 3–4, 199–214 (1987).

    Google Scholar 

  19. H. Czyz and J. K. Snakowski, Influence of acoustical field on small particles, J. Phys., 4, 861–864 (1994).

    Google Scholar 

  20. D. A. Gubaidullin and P. P. Osipov, Effect of hydrodynamic forces on the drift of inclusions in wave fields, Probl. Énerget., Nos. 1–2, 3–13 (2010).

  21. D. A. Gubaidullin and P. P. Osipov, On certain regimes of inclusion drift in acoustic fields, Inzh.-Fiz. Zh., 84, No. 2, 255–262 (2011).

    Google Scholar 

  22. Zhe Cui, Li Yang, and L. S. Fan, Bubble modulation using acoustic standing waves in a bubbling system, Chem. Eng. Sci., 60, 5971–5981 (2005).

    Article  Google Scholar 

  23. A. G. Kutushev, Non-Stationary Shock Waves in Two-Phase Gas-Particle or Gas-Droplet Mixtures, Nedra, St. Petersburg (2003).

  24. V. M. Boiko and S. V. Poplavskii, Particle and drop dynamics in the flow behind a shock wave, J. Fluid Dynam., 42, No. 3, 433–441 (2007).

    Article  MATH  Google Scholar 

  25. A. Goldshtein, K. Shuster, P. Vainshtein, M. Fichman, and C. Gutfinger, Particle motion in resonance tubes, J. Fluid Mech., 360, 1–20 (1998).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Osipov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 1, pp. 50–58, January–February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubaidullin, L.A., Osipov, P.P. Influence of Reynolds and Strouhal numbers on the direction of the wave force acting on inclusions in a standing sinusoidal wave. J Eng Phys Thermophy 86, 51–61 (2013). https://doi.org/10.1007/s10891-013-0804-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0804-4

Keywords

Navigation