Skip to main content
Log in

Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The nanofluid jet impingement heat transfer characteristics in a rectangular mini-fin heat sink are studied. The heat sink is fabricated from aluminum by a wire electrical discharge machine. The nanofluid is a mixture of deionized water and nanoscale TiO2 particles with a volume nanoparticle concentration of 0.2%. The results obtained for nanofluid jet impingement cooling in the rectangular mini-fin heat sink are compared with those found in the water jet impingement cooling. The effects of the inlet temperature of the nanofluid, its Reynolds number, and the heat flux on the heat transfer characteristics of the rectangular mini-fin heat sink are considered. It is found that the average heat transfer rates for the nanofluid as coolant are higher than those for deionized water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. F. Peng and G. P. Peterson, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transfer, 39, No. 2, 2599–2608 (1996).

    Article  Google Scholar 

  2. T. M. Adams, S. l. Abdel-Khalik, S. M. Jeter, and Z. H. Qureshis, An experimental investigation of singlephase forced convection in microchannels, Int. J. Heat Mass Transfer, 41, No. 8, 851–857 (1996).

    Google Scholar 

  3. C. Gillot, A. Bricard, and C. Schaeffer, Single- and two-phase heat exchangers for power electronic components, Int. J. Thermal Sci., 39, No. 2, 826–832 (2000).

    Article  Google Scholar 

  4. W. Qu and I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase microchannel heat sink, Int. J. Heat Mass Transfer, 45, No. 3, 2549–2565 (2002).

    Article  Google Scholar 

  5. G. Hetsroni, A. Mosyak, Z. Segal, and G. Ziskind, A uniform temperature heat sink for cooling of electronic devices, Int. J. Heat Mass Transfer, 45, No. 1, 3275–3286 (2002).

    Article  Google Scholar 

  6. B. Agostini, B. Watel, A. Bontemps, and B. Thonon, Friction factor and heat transfer coefficient of R134a liquid flow in mini-channels, Appl. Thermal Eng., 22, No. 5, 1821–1834 (2002).

    Article  Google Scholar 

  7. B. Agostini, B. Watel, A. Bontemps, and B. Thonon, Liquid flow friction factor and heat transfer coefficient in small channels: an experimental investigation, Exp. Thermal Fluid Sci., 28, No. 2, 97–103 (2004).

    Article  Google Scholar 

  8. W. Owhaib and B. Palm, Experimental investigation of single-phase convective heat transfer in circular microchannels, Exp. Thermal Fluid Sci., 28, No. 6, 105–110 (2004).

    Article  Google Scholar 

  9. J. Yue, G. Chen, and Q. Yuan, Pressure drops of single and two-phase flows through T-type microchannel mixers, Chem. Eng. J., 102, No. 4, 11–24 (2004).

    Article  Google Scholar 

  10. F. F. Abdelall, G. Hahn, S. M. Ghiasian, S. I. Abdel-Khalik, S. S. Jeter, M. Yoda, and D. L. Sadowski, Pressure drop caused by abrupt flow area changes in small channels, Exp. Thermal Fluid Sci., 29, No. 8, 425–434 (2005).

    Article  Google Scholar 

  11. P. S. Lee, S. V. Garimella, and D. Liu, Investigation of heat transfer in rectangular microchannels, Int. J. Heat Mass Transfer, 48, No. 2, 1688–1704 (2005).

    Article  Google Scholar 

  12. H. Y. Zhang, D. Pinjala, T. N. Wong, K. C. Toh, and Y. K. Joshi, Single phase liquid cooled microchannel heat sink for electronic packages, Appl. Thermal Eng., 25, No. 5, 1472–1487 (2005).

    Article  Google Scholar 

  13. S. Shen, J. L. Xu, J. J. Zhou, and Y. Chen, Flow and heat transfer in microchannels with rough wall surface, Energy Convers. Manag., 47, No. 6, 1311–1325 (2006).

    Article  Google Scholar 

  14. T. P. Brackbill, Effect of triangular roughness elements on pressure drop in microchannels and minichannels, in: Proc. ICNMM 2006, Fourth Int. Conf. on Nanochannels, Microchannels, and Minichannels’, June 19–21, 2006, Limerick, Ireland (2006).

  15. M. E. Steinke and S. G. Kandlikar, Single phase liquid friction factors in microchannels, Int. J. Thermal Sci., 45, No. 1, 1073–1083 (2006).

    Article  Google Scholar 

  16. P. Hrnjak and X. Tu, Single phase pressure drop in microchannels, Int. J. Heat Fluid Flow, 28, No. 7, 2–14 (2007).

    Article  Google Scholar 

  17. X. L. Xie, Z. J. Liu, Y. L. He, and W. Q. Tao, Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Appl. Thermal Eng., 29, No. 5, 64–74 (2009).

    Article  Google Scholar 

  18. S. Geedipalli, A. K. Datta, and V. Rakesh, Heat transfer in a combination microwave–jet impingement oven, Food Bioprod. Process., 86, No. 2, 53–63 (2008).

    Article  Google Scholar 

  19. M. K. Sung and I. Mudawar, Single-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module, Int. J. Heat Mass Transfer, 51, No. 3, 3882–3895 (2008).

    Article  MATH  Google Scholar 

  20. M. F. Koseoglu and S. Baskaya, The effect of flow field and turbulence on heat transfer characteristics of confined circular and elliptic impinging jets, Int. J. Thermal Sci., 47, No. 8, 1332–1346 (2008).

    Article  Google Scholar 

  21. M. F. Koseoglu and S. Baskaya, Experimental and numerical investigation of natural convection effects on confined impinging jet heat transfer, Int. J. Heat Mass Transfer, 52, No. 1, 1326–1336 (2009).

    Article  MATH  Google Scholar 

  22. V. Katti and S. V. Prabhu, Heat transfer enhancement on a flat surface with axisymmetric detached ribs by normal impingement of circular air jet, Int. J. Heat Fluid Flow, 29, No. 2, 1279–1294 (2008).

    Article  Google Scholar 

  23. P. R. Kanna and M. K. Das, Heat transfer study of two-dimensional laminar incompressible offset jet flows, Int. J. Thermal Sci., 47, No. 1, 1620–1629 (2008).

    Article  Google Scholar 

  24. M. Goodro, J. Park, P. Ligrani, M. Fox, and H. K. Moon, Effects of hole spacing on spatially-resolved jet array impingement heat transfer, Int. J. Heat Mass Transfer, 51, No. 4, 6243–6253 (2008).

    Article  Google Scholar 

  25. T. M. Jeng, S. C. Tzeng, and H. R. Liao, Flow visualizations and heat transfer measurements for a rotating pin-fin heat sink with a circular impinging jet, Int. J. Heat Mass Transfer, 52, No. 4, 2119–2131 (2009).

    Article  Google Scholar 

  26. C. T. Nguyen, N. Galanis, G. Polidori, S. Fohanno, C. V. Popa, and A. L. Bechec, An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluids, Int. J. Thermal Sci., 48, No. 7, 401–411 (2009).

    Article  Google Scholar 

  27. M. A. R. Sharif and A. Banerjee, Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate, Appl. Thermal Eng., 29, No. 1, 532–540 (2009).

    Article  Google Scholar 

  28. B. P. Whelan and A. J. Robinson, Nozzle geometry effects in liquid jet array impingement, Appl. Thermal Eng., 29, No. 9, 2211–2221 (2009).

    Article  Google Scholar 

  29. J. Koo and C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transfer, 48, No. 1, 2652–2661 (2005).

    Article  MATH  Google Scholar 

  30. R. Chein and G. Huang, Analysis of microchannel heat sink performance using nanofluids, Appl. Thermal Eng., 25, No. 3, 3104–3114 (2005).

    Article  Google Scholar 

  31. S. P. Jang and S. U. S. Choi, Cooling performance of a microchannel heat sink with nanofluids, Appl. Thermal Eng., 26, No. 6, 2457–2463 (2006).

    Article  Google Scholar 

  32. S. W. Kang, W. C. Wei, S. H. Tsai, and S. Y. Yang, Experimental investigation of silver nanofluid on heat pipe thermal performance, Appl. Thermal Eng., 26, No. 2, 2377–2382 (2006).

    Article  Google Scholar 

  33. R. Chein and J. Chuang, Experimental microchannel heat sink performance studies using nanofluids, Int. J. Thermal Sci., 46, No. 5, 57–66 (2007).

    Article  Google Scholar 

  34. J. Lee and I. Mudawar, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, Int. J. Heat Mass Transfer, 50, No. 2, 452–463 (2007).

    Article  Google Scholar 

  35. C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, Heat transfer enhancement using Al2O3–water nanofluids for an electronic liquid cooling system, Appl. Thermal Eng., 27, No. 3, 1501–1506 (2007).

    Article  Google Scholar 

  36. C. H. Chen, Forced convection heat transfer in microchannel heat sinks, Int. J. Heat Mass Transfer, 50, No. 1, 2182–2189 (2007).

    Article  MATH  Google Scholar 

  37. T. H. Tsai and R. Chein, Performance analysis of nanofluid-cooled microchannel heat sinks, Int. J. Heat Fluid Flow, 28, No. 1, 1013–1026 (2007).

    Article  Google Scholar 

  38. C. Kleinstreuer, J. Li, and J. Koo, Microfluidics of nanodrug delivery, Int. J. Heat Mass Transfer, 51, No. 9, 5590–5597 (2008).

    Article  MATH  Google Scholar 

  39. J. Li and C. Kleinstreuer, Thermal performance of nanofluid flow in microchannels, Int. J. Heat Fluid Flow, 29, No. 6, 1221–1232 (2008).

    Article  Google Scholar 

  40. W. Duangtongsuk and S. Wongwises, Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid, Int. Comm. Heat Mass Transfer, 35, No. 10, 1320–1326 (2008).

    Article  Google Scholar 

  41. W. Duangtongsuk and S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, 52, No. 7, 2059–2067 (2009).

    Article  Google Scholar 

  42. W. Duangtongsuk and S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime, Int. J. Heat Mass Transfer, 53, No. 13, 334–344 (2010).

    Article  Google Scholar 

  43. H. W. Coleman and W. G. Steele, Experimental and Uncertainty Analysis for Engineers, John Wiley & Sons, New York (1989).

    Google Scholar 

  44. B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11, No. 1, 151–170 (1998).

    Article  Google Scholar 

  45. Y. Xuan and W. Roetzel, Conceptions of heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, No. 2, 3701–3707 (2000).

    Article  MATH  Google Scholar 

  46. D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids, Springer, Berlin (1999).

    Google Scholar 

  47. W. Yu and S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167–171 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paisarn Naphon.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 85, No. 6, pp. 1324–1331, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naphon, P., Nakharintr, L. Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink. J Eng Phys Thermophy 85, 1432–1440 (2012). https://doi.org/10.1007/s10891-012-0793-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-012-0793-8

Keywords

Navigation