Journal of Engineering Physics and Thermophysics

, Volume 85, Issue 6, pp 1357–1371 | Cite as

Simulation of a turbulent supersonic underexpanded jet flowing into a submerged space with the help of a shear stress transfer model

  • S. A. Isaev
  • Yu. M. Lipnitskii
  • P. A. Baranov
  • A. V. Panasenko
  • A. E. Usachov

We have calculated the flow of an axisymmetric turbulent supersonic underexpanded jet into a submerged space with the help of the VP2/3 package as part of the generalized pressure correction procedure. The shear stress transfer model modified with account for the curvature of streamlines has been verified on the basis of comparison with V. I. Zapryagaev’s data obtained at the S. A. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences. The influence of the generated vortex viscosity on the shock-wave structure of the jet, the field of flow parameters, and the turbulence characteristics has been analyzed.


shock-wave structure supersonic underexpanded jet turbulence calculation SST model tube tests pressure correction procedure SLAU multiblock computational technologies VP2/3 package 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. P. Ginzburg, Aerogasdynamics [in Russian], Vysshaya Shkola, Moscow (1966).Google Scholar
  2. 2.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).Google Scholar
  3. 3.
    I. A. Belov, Interaction of Nonuniform Flows with Obstacles [in Russian], Mashinostroenie, Leningrad (1983).Google Scholar
  4. 4.
    S. A. Isaev and A. Yu. Mitin, Numerical investigation of the interaction of a supersonic jet with a blunt body in a cocurrent flow, in: Inter-University Volume of Scientific Papers "Special Problems of the Aerodynamics of Flying Vehicles," No. 145, LIAP, Leningrad (1980), pp. 158–162.Google Scholar
  5. 5.
    I. A. Belov, S. A. Isaev, A. Yu. Mitin, V. V. Tsymbalov, Simulation of separated flows in the shock layer of obstacles in the presence of a nonuniform flow around them, in: Supersonic Gas Jets [in Russian], Nauka, Novosibirsk (1983), pp. 172–178.Google Scholar
  6. 6.
    A. V. Ermishin and S. A. Isaev (Eds.), Control of the Flow Past Bodies with Vortex Cells as Applied to Spacecraft of Integral Configuration (Numerical and Physical Simulation) [in Russian], MGU, Moscow (2003).Google Scholar
  7. 7.
    Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leontiev, Numerical Simulation of Vortical Intensification of Heat Transfer in Tube Banks [in Russian], Sudostroenie, St. Petersburg (2005).Google Scholar
  8. 8.
    P. A. Baranov, S. A. Isaev, A. I. Leontiev, and A. E. Usachov, Numerical simulation of the reduction of aerodynamic heating of a relief with spherical and cellular dimples at super- and hypersonic velocities, in: Proc. 4th Rus. Nat. Heat Transfer Conf., Vol. 6, Disperse Flows and Porous Media. Intensification of Heat Transfer, Izd. Dom MÉI, Moscow (2006), pp. 158–161.Google Scholar
  9. 9.
    A. I. Leontiev, S. A. Isaev, and G. S. Sadovnikov, Numerical simulation of the decrease in heat loads in superand hypersonic flow past a flat wall with ditches and dimples, Temp. Prots. Tekh., No. 9, 362–366 (2009).Google Scholar
  10. 10.
    I. É. Ivanov and I. A. Kryukov, Numerical simulation of separated turbulent flows in nozzles and jets, in: Proc. 17th School-Seminar of Young Scientists and Specialists headed by A. I. Leontiev [in Russian], Vol. 1, Izd. Dom MÉI, Moscow (2009), pp. 94–100.Google Scholar
  11. 11.
    S. A. Isaev, A. G. Sudakov, P. A. Baranov, et al., Development, verification, and application of VP2/3 opentype disparalleled package based on multiblock computational technologies for solving fundamental, applied, and operational problems of aeromechanics and thermal physics, in: Bulletin of the South Ural State University, SeriesMathematical Simulation and Programming,” Issue 3, No. 17 (100), 59–72 (2009).Google Scholar
  12. 12.
    J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Heidelberg, Berlin (1999).MATHCrossRefGoogle Scholar
  13. 13.
    K. C. Karki and S. V. Patankar, Pressure-based calculation procedure for viscous flows at all speed in arbitrary configuration, AIAA J., 27, 1167–1174 (1989).CrossRefGoogle Scholar
  14. 14.
    Y. G. Lai, R. M. So, and A. J. Przekwas, Turbulent transonic flow simulation using a pressure-based method, Int. J. Eng. Sci., 33, No. 4, 469–483 (1995).MATHCrossRefGoogle Scholar
  15. 15.
    K. Kitamura and E. Shima, Improvements of SIMPLE low-dissipation AUSM against shock instabilities consideration of interfacial speed of sound, in: J. C. F. Pereira and A. Sequeira (Eds.), Proc. V European Conf. on Computational Fluid Dynamics ECCOMAS CFD 2010, 14–17 June 2010, Lisbon, Portugal (2010).Google Scholar
  16. 16.
    B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101–136 (1979).CrossRefGoogle Scholar
  17. 17.
    G. D. Van Albada, B. Van Leer, and W. W. Roberts, A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., 108, 76–84 (1982).MATHGoogle Scholar
  18. 18.
    S. A. Isaev, Yu. M. Lipnitskii, A. N. Mikhalev, et al., Simulation of the supersonic turbulent flow around a cylinder with coaxial disks, Inzh.-Fiz. Zh., 84, No. 4, 764–776 (2011).Google Scholar
  19. 19.
    V. I. Zapryagaev, I. N. Kavun, and N. P. Kiselev, Flow structure in the initial segment of a supersonic jet flowing out of a stripped nozzle, Prikl. Mekh. Tekh. Fiz., 51, No. 2, 71–80 (2010).Google Scholar
  20. 20.
    I. P. Ginzburg, B. N. Sobkolov, and G. A. Akimov, On the determination of the main parameters of the flow in a supersonic jet of a perfect gas, in: Gas Dynamics and Heat Transfer, Issue 2, Uchen. Zap. Leningrad. Univ., 38–55 (1970).Google Scholar
  21. 21.
    S. V. Guvernyuk, O. O. Egorychev, S. A. Isaev, et al., Numerical and physical simulation of the wind effect on a group of high-rise buildings, Nauch.-Tekh. Zh. Vestn. MGSU, 1, No. 3, 185–191 (2011).Google Scholar
  22. 22.
    K. Lewis and D. Carlson, Position of the normal compression shock in an underexpanded gas and two-phase jet, Raketn. Tekh. Kosmonavt., 2, No. 4, 239–241 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • S. A. Isaev
    • 1
  • Yu. M. Lipnitskii
    • 2
  • P. A. Baranov
    • 3
  • A. V. Panasenko
    • 2
  • A. E. Usachov
    • 4
  1. 1.St. Petersburg State University of Civil AviationSt. PetersburgRussia
  2. 2.Federal state unitary enterprise Central Research Institute of Mechanical EngineeringKorolevRussia
  3. 3.Accumulator company “Rigel”St. PetersburgRussia
  4. 4.Branch FGUP TsAGI “Moskovskii Kompleks,” TsAGIMoscowRussia

Personalised recommendations