Skip to main content
Log in

Electromagnetic effects on Rayleigh surface wave propagation in a homogeneous isotropic thermo-microstretch elastic half-space

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper deals with the problem of electromagnetic effect on the propagation of Rayleigh surface waves in a homogeneous, isotropic, thermally-conducting microstretch elastic half-space. In this context, the generalized theory of thermoelasticity is considered. The governing equations for the Rayleigh surface waves in the cases of insulated as well as isothermal boundaries are derived. In the presence of the magnetic effect, the analytical expressions for the displacement, microrotation, microstretch, and temperature changes are obtained. The changes in the phase velocity, microrotation, and path of particles for aluminum epoxy material are presented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. S. Rayleigh, On waves propagating along the plane surface of an elastic solid, Proc. Land. Math. Soc., 17, 4–11 (1887).

    Article  Google Scholar 

  2. I. A. Victorov, Rayleigh and Lamb Waves: Physical Theory and Applications, Plenum Press, New York (1967).

    Google Scholar 

  3. H. W. Reinhardt and J. W. Dally, Some characteristics of Rayleigh wave interaction with surface flaws, Mater. Eval., 28, 213–220 (1970).

    Google Scholar 

  4. M. W. Richard, Surface elastic waves, Proc. IEEE, 58, 1278–1281 (1990).

    Google Scholar 

  5. A. C. Eringen, Microcontinuum Field Theories: Foundation and Solids, Springer, New York (1999).

    Book  Google Scholar 

  6. S. Kaliski, Wave equation of heat conduction, Bull. Acad. Pol. Sci., Ser. Sci. Tech., 13, 211–219 (1965).

    Google Scholar 

  7. S. Kaliski, Wave equation of thermoelasticity, Bull. Acad. Pol. Sci., Ser. Sci. Tech., 13, 253–360 (1965).

    Google Scholar 

  8. H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  MATH  Google Scholar 

  9. A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elast., 2, 1–7 (1972).

    Article  MATH  Google Scholar 

  10. I. Muller, On the entropy inequality, Arch. Rat. Mech. Anal., 26, 118–141 (1967).

    Article  Google Scholar 

  11. A. E. Green and N. Laws, On the entropy production inequality, Arch. Rat. Mech. Anal., 45, 47–59 (1972).

    Article  MathSciNet  Google Scholar 

  12. E. S. Suhubi, Thermoelastic solids, in: A. C. Eringen (Ed.), Continuum Physics, Vol. 2, Academic Press, New York (1975).

    Google Scholar 

  13. R. S. Dhaliwal and H. H. Sherief, Generalized thermoelasticity for anistropic media, Quart. Appl. Mech., 38, 1–8 (1980).

    MathSciNet  MATH  Google Scholar 

  14. D. Iesan and A. Pompei, On the equilibrium theory of microstretch elastic solids, Int. J. Eng. Sci., 33, 399–410 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  15. De Cicco and L. Nappa, On the theory of thermomicrostretch elastic solids, J. Thermal Stresses, 22, 565–580 (1999).

    Article  MathSciNet  Google Scholar 

  16. R. Quintanilla, On the spatial decay for the dynamic problem of thermomicrostretch elastic solid, Int. J. Eng. Sci., 40, 299–309 (2002).

    Google Scholar 

  17. A. C. Eringen, Electromagnetic theory of microstretch elasticity and bone modeling, Int. J. Eng. Sci., 42, 231–242 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. I. A. Othman and K.H. Lotfy, On the plane waves of generalized thermo-microstretch elastic half-space under three theories, Int. Commun. Heat Mass Transfer, 37, 192–200 (2010).

    Article  Google Scholar 

  19. S. K. Tomar and M. Garg, Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces, Int. J. Eng. Sci., 43, 139–169 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. C. Eringen, Theory of thermomicrostretch elastic solids, Int. J. Eng. Sci., 28, 1291–301 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. N. Sharma, S. Kumar, and Y. D. Sharma, Effect of micropolarity, microstretch and relaxation times on Rayleigh surface waves in thermoelastic solids, Int. J. Appl. Math. Mech., 5, No. 2, 17–38 (2009).

    Google Scholar 

  22. B. Singh and R. Kumar, Wave propagation in a generalized thermomicrostretch elastic solid, Int. J. Eng. Sci., 36, 891–912 (1998).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shaw.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 85, No. 1, pp. 212–219, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, S., Mukhopadhyay, B. Electromagnetic effects on Rayleigh surface wave propagation in a homogeneous isotropic thermo-microstretch elastic half-space. J Eng Phys Thermophy 85, 229–238 (2012). https://doi.org/10.1007/s10891-012-0643-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-012-0643-8

Keywords

Navigation