Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 84, Issue 5, pp 1016–1025 | Cite as

Rheological properties of high-concentration suspensions used for obtaining electrorheological media

  • S. O. Il’in
  • A. Ya. Malkin
  • E. V. Korobko
  • Z. A. Novikova
  • N. A. Zhuravskii
Article

The rheological properties of high-concentration suspensions used for making electrorheological media have been investigated. We have established the characteristic features of their behavior, including the passage over the yield point with a decrease in viscosity by several decimal orders of magnitude and strain hardening followed by an increase in the shear stress. The effect of thixotropy of these systems and the role of the preceding deformation have been described. The effect of self-sustained stress oscillations resulting from the ambiguity of the rheological characteristic of the material has been revealed.

Keywords

electrorheological media rheological properties straining conditions plasticity viscosity solid-like and liquid-like structures thixotropy self-sustained stress oscillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. C. Heimenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd. ed., Marcel Dekker, New York (1997).Google Scholar
  2. 2.
    M. Mooney, The viscosity of a concentrated suspension of spherical particles, J. Colloid. Sci., 6, No. 2, 162–170 (1951).CrossRefGoogle Scholar
  3. 3.
    Y. Aoki, A. Hatano, and H. Watanabe, Rheology of carbon black suspensions. II. Well dispersed system, Rheol. Acta, 42, No. 4, 321–325 (2003).CrossRefGoogle Scholar
  4. 4.
    C. Chang and R. L. Powell, Effect of particle size distributions on the rheology of concentrated bimodal suspensions, J. Rheol., 38, No. 1, 85–99 (1994).CrossRefGoogle Scholar
  5. 5.
    R. F. Storms, B. V. Ramarao, and R. H. Weiland, Low shear rate viscosity of bimodally dispersed suspensions, Powder Tech., 63, No. 3, 247–259 (1990).CrossRefGoogle Scholar
  6. 6.
    P. Gondret and L. Petit, Dynamic viscosity of macroscopic suspensions of bimodal sized solid spheres, J. Rheol., 41, No. 6, 1261–1274 (1997).CrossRefGoogle Scholar
  7. 7.
    Th.-S. Vu, G. Ovarlez, and X. Chateau, Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids, J. Rheol., 54, No. 4, 815–833 (2010).CrossRefGoogle Scholar
  8. 8.
    J. G. Oldroyd, The elastic and viscous properties of emulsions and suspensions, Proc. Roy. Soc. London Math. Phys. Sci., 218, No. 1132, 122–132 (1953).zbMATHCrossRefGoogle Scholar
  9. 9.
    T. G. Mason and D. A. Weitz, Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids, Phys. Rev. Lett., 74, No. 7, 1250–1253 (1995).CrossRefGoogle Scholar
  10. 10.
    M. J. Solomon and Q. Lu, Rheology and dynamics of particles in viscoelastic media, Curr. Opin. Colloid Interface Sci., 6, Nos. 5–6, 430–437 (2001).CrossRefGoogle Scholar
  11. 11.
    G. Popescu, A. Dogariu, and R. Rajagopalan, Spatially resolved microrheology using localized coherence volumes, Phys. Rev. E, 65, No. 4, 041514 (2002).CrossRefGoogle Scholar
  12. 12.
    I. S. Sohn and R. Rajagopalan, Microrheology of model quasi-hard-sphere dispersions, J. Rheol., 48, No. 1, 117–143 (2004).CrossRefGoogle Scholar
  13. 13.
    B. R. Dasgupta, S.-Y. Tee, J. C. Crocker, B. J. Frisken, and D. A. Weitz, Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering, Phys. Rev. E, 65, No. 5, 051505 (2002).CrossRefGoogle Scholar
  14. 14.
    J. Nestor, M. Obiols-Rabasa, J. Esquena, C. Solans, B. Levecke, K. Booten, and Th. F. Tadros, Viscoelastic properties of polystyrene and poly(methyl methacrylate) dispersions sterically stabilized by hydrophobically modified inulin (polyfructose) polymeric surfactant, J. Colloid Interface Sci., 319, No. 1, 152–159 (2008).CrossRefGoogle Scholar
  15. 15.
    J. J. Brennan and T. E. Jermyn, Correlation of vulcanizate properties with polymer–black interaction, J. Appl. Polym. Sci., 9, No. 8, 2749–2762 (1965).CrossRefGoogle Scholar
  16. 16.
    R. Krishnamoorti and E. P. Giannelis, Rheology of end-tethered polymer layered silicate nanocomposites, Macromolecules, 30, No. 14, 4097–4102 (1997).CrossRefGoogle Scholar
  17. 17.
    F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules, 37, No. 24, 9048–9055 (2004).CrossRefGoogle Scholar
  18. 18.
    A. S. Sarvestani and C. R. Picu, Network model for the viscoelastic behavior of polymer nanocomposites, Polymer, 45, No. 22, 7779–7790 (2004).CrossRefGoogle Scholar
  19. 19.
    Q. Zhang and L. A. Archer, Optical polarimetry and mechanical rheometry of poly(ethylene oxide)–silica dispersions, Macromolecules, 37, No. 5, 1928–1936 (2004).CrossRefGoogle Scholar
  20. 20.
    M. S. P. Shaffer, X. Fan, and A. H. Windle, Dispersion and packing of carbon nanotubes, Carbon, 36, No. 11, 1603–1612 (1998).CrossRefGoogle Scholar
  21. 21.
    P. Pötschke, T. D. Fornes, and D. R. Paul, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, 43, No. 11, 3247–3255 (2002).CrossRefGoogle Scholar
  22. 22.
    J. Obrzut, J. F. Douglas, S. B. Kharchenko, and K. B. Migler, Shear-induced conductor-insulator transport in melt-mixed polypropylene-carbon nanotube dispersions, Phys. Rev. B, 76, No. 19, 195420 (2007).CrossRefGoogle Scholar
  23. 23.
    H. Zhong and J. R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamic simulation and analytic thermal modeling, Phys. Rev. B, 74, No. 11, 125403 (2006).CrossRefGoogle Scholar
  24. 24.
    L. Berhan and A. M. Sastry, Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hardcore models, Phys. Rev. E, 75, No. 4, 041120 (2007).CrossRefGoogle Scholar
  25. 25.
    V. G. Kulichikhin, A. V. Semakov, V. V. Karbushev, N. A. Platé, and S. J. Picken, The "chaos-order" transition under critical shear flow conditions of the melts of polymers and nanocomposites, Vysokomol. Soedin., 51, No. 11, 2044–2054 (2009).Google Scholar
  26. 26.
    A. Ya. Malkin, O. Yu. Sabsai, E. A. Verebskaya, V. A. Zolotarev, and G. V. Vinogradov, Time effects on passing over the yield point of coagulation disperse systems, Kolloidn. Zh., 38, No. 1, 181–182 (1976).Google Scholar
  27. 27.
    P. H. T. Uhlherr, J. Guo, C. Tiu, X.-M. Zhang, J. Z.-Q. Zhou, and T.-N. Fang, The shear-induced solid-liquid transition in yield stress materials with chemically different structure, J. Non-Newtonian Fluid Mech., 125, Nos. 2–3, 101–119 (2005).CrossRefGoogle Scholar
  28. 28.
    V. T. O’Brien and M. E. Mackley, Shear and elongational flow properties of kaolin suspensions, J. Rheol., 46, No. 3, 557–572 (2002).CrossRefGoogle Scholar
  29. 29.
    Y. S. Lee and N. J. Wagner, Dynamic properties of shear thickening colloidal suspensions, Rheol. Acta, 42, No. 3, 199–208 (2003).Google Scholar
  30. 30.
    G. V. Franks, Zh. Zhou, N. J. Duin, and D. V. Boger, Effect of interparticle forces on shear thickening of oxide suspensions, J. Rheol., 44, No. 3, 759–780 (2000).CrossRefGoogle Scholar
  31. 31.
    R. G. Egres and N. J. Wagner, The rheology and microstructure of acicular precipitated calcium carbonate colloid suspensions through the shear thickening transition, J. Rheol., 49, No. 3, 719–746 (2005).CrossRefGoogle Scholar
  32. 32.
    F. Bagusat, B. Böhme, P. Schiller, and H.-J. Mögel, Shear induced periodic structure changes in concentrated alumina suspensions at constant shear rate monitored by FBRM, Rheol. Acta, 44, No. 3, 313–318 (2005).CrossRefGoogle Scholar
  33. 33.
    A. Potanin, Thixotropy and rheopexy of aggregated dispersions with wetting polymer, J. Rheol., 48, No. 6, 1279–1293 (2004).CrossRefGoogle Scholar
  34. 34.
    A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity. Measuring Methods [in Russian], Khimia, Moscow (1979).Google Scholar
  35. 35.
    I. M. Belkin, G. V. Vinogradov, and A. I. Leonov, Rotational Devices. Measurement of Viscosity and of the Physicomechanical Characteristics of Materials [in Russian], Mashinostroenie, Moscow (1968).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • S. O. Il’in
    • 1
  • A. Ya. Malkin
    • 1
  • E. V. Korobko
    • 2
  • Z. A. Novikova
    • 2
  • N. A. Zhuravskii
    • 2
  1. 1.Institution of the Russian Academy of Sciences A. V. Topchiev Order of the Red Banner of Labor Institute of Petroleum-Chemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations