Skip to main content
Log in

A Boubaker polynomials expansion scheme (BPES) related analytical solution to the Williams–Brinkmann stagnation point flow equation at a blunt body

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An analytic solution for the problem of Williams–Brinkmann axisymmetric steady flow in the vicinity of a stagnation point at a blunt body is proposed. The boundary conditions are embedded in the main system of equations by means of the Boubaker polynomials expansion scheme (BPES). These differential equations are solved analytically and yield continuous and differentiable solutions compared to some published ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nasr, I. A. Hassanien, and H. M. El-Hawary, Chebyshev solution of laminar boundary-layer flow, Int. J. Comput. Math., 33, 127–132 (1990).

    Article  MATH  Google Scholar 

  2. S. A. Orszag, Spectral methods for problems in complex geometries, J. Comp. Phys., 37, 70–92 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  3. F. M. White, Viscous FIuid Flow, McGraw-Hill Inc., New York (1974).

    Google Scholar 

  4. A. R. Wadia and F. R. Payne, A boundary value technique for the analysis of laminar boundary layer flows, Int. J. Comput. Math., 9, 163–172 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Rosenhead, Laminar Boundary Layers, Oxford University Press (1963).

  6. P. M. Beckett, Finite difference solution of boundary layer type equation, Int. J. Comput. Math., 14, 83–190 (1983).

    Article  MathSciNet  Google Scholar 

  7. T. Mahapatra and A. S. Gupta, Stagnation-point flow towards a stretching surface, Can. J. Chem. Eng., 81, 258–263 (2003).

    Article  Google Scholar 

  8. T. Mahapatra and A. S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat Mass Transfer, 38, 517–521 (2002).

    Article  Google Scholar 

  9. Y. Lok, N. Amin, and I. Pop, Non-orthogonal stagnation point flow towards a stretching sheet, Int. J. Nonlinear Mech., 41, 622–627 (2006).

    Article  Google Scholar 

  10. C. Y. Wang, Stagnation flow towards a shrinking sheet, Int. J. Nonlinear Mech., 43, 377–382 (2008).

    Article  Google Scholar 

  11. O. D. Oyodum, O. B. Awojoyogbe, M. Dada, and J. Magnuson, On the earliest definition of the Boubaker polynomials, Eur. Phys. J.–Appl. Phys., 46, 21201–21203 (2009).

    Article  Google Scholar 

  12. J. Ghanouchi, H. Labiadh, and K. Boubaker, An attept to solve the heat transfer equation in a model of pyrolysis spray using 4q-order Boubaker polynomials, Int. J. Heat Technol., 26(1), 49–53 (2008).

    Google Scholar 

  13. S. Slama, J. Bessrour, M. Bouhafs, and K. B. Ben Mahmoud, Numerical distribution of temperature as a guide to investigation of melting point maximal front spatial evolution during resistance spot welding using Boubaker polynomials, Numer. Heat Transfer. Part A, 55, 401–408 (2009).

    Article  Google Scholar 

  14. S. Fridjine and M. Amlouk, A new parameter: An ABACUS for optimizing functional materials using the Boubaker polynomials expansion scheme, Modern Phys. Lett. B, 23, 2179–282 (2009).

    Article  MATH  Google Scholar 

  15. S. Tabatabaei, T. Zhao, O. Awojoyogbe, and F. Moses, Cut-off cooling velocity profiling inside a keyhole model using the Boubaker polynomials expansion scheme, Heat Mass Transfer, 45, 1247–1251 (2009).

    Article  Google Scholar 

  16. A. Belhadj, O. Onyango, and N. Rozibaeva, Boubaker polynomials expansion scheme-related heat transfer investigation inside keyhole model, J. Thermophys. Heat Transfer, 23, 639–640 (2009).

    Article  Google Scholar 

  17. N. Guezmir, T. Ben Nasrallah, K. Boubaker, M. Amlouk, and S. Belgacem, Optical modeling of compound CuInS2 using relative dielectric function approach and Boubaker polynomials expansion scheme BPES, J. Alloys Comp., 481, 543–548 (2009).

    Article  Google Scholar 

  18. Q. Wu, S. Weinbaum, and Y. Andreopoulus, Stagnation-point flows in a porous medium, Chem. Eng. Sci., 60, 123–134 (2005).

    Article  Google Scholar 

  19. V. Kumaran, R. Tamizharasi, and K. Vajravelu, Approximate analytic solutions of stagnation point flow in a porous medium, Commun. Nonlinear Sci. Numer. Simul., 14, 2677–2688 (2009).

    Article  Google Scholar 

  20. S. E. El-Gendi, Chebyshev solution of differential, integral and integro-differential equations, Comput. J., 12, 282–287 (1969).

    MATH  MathSciNet  Google Scholar 

  21. I. A. Hassanien, Chebyshev solution of stagnation point flow, Energy Convers. Mgmt., 38, 839–845 (1997).

    Article  Google Scholar 

  22. H. W. Cheng, M. N. Ozisik, and J. C. Williams, III. Nonsteady three-dimensional stagnation-point flow, ASME J. Appl. Mech., 38, 282–287 (1960).

    Article  Google Scholar 

  23. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Zhang.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 3, pp. 571–575, May–June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D.H., Li, F.W. A Boubaker polynomials expansion scheme (BPES) related analytical solution to the Williams–Brinkmann stagnation point flow equation at a blunt body. J Eng Phys Thermophy 84, 618–623 (2011). https://doi.org/10.1007/s10891-011-0513-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0513-9

Keywords

Navigation