Skip to main content

Advertisement

Log in

Investigation of the adsorption and diffusion interaction of atomic hydrogen with low-index surfaces of crystal aluminum nanoplates

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

By the method of density functional in the local density and generalized gradient approximation, the dependences of the potential energy of interaction of atomic hydrogen with low-index surfaces of aluminum nanoplates have been calculated. The spatial configurations of hydrogen atoms and surface layers of the plate corresponding to the stable structures formed by adsorption and diffusion have been determined. It has been shown that atomic hydrogen is adsorbed irreversibly on the Al surface, releasing energy of 2.8–3.1 eV whose value is determined by the atomic structure of the surface. On the atomic planes (100) and (110), the bridge form of chemisorption has the minimum energy. For the (111) surface, the energy-stable state is realized in the threefold coordinated position of the hydrogen atom. Diffusion of hydrogen is an activated process in which energy of 0.5–0.8 eV is absorbed depending on the atomic structure of the plate. Atomic hydrogen moves through interatomic voids sequentially occupying octa- and tetrahedral positions. It has been established that the transient state between stable Oh and Td positions in the bulk of the plate is the geometrical configuration of the hydrogen atom having third-order symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Paul, Hydrogen adsorption on Al(100), Phys. Rev. B, 37, Nos. 11–15, 6164–6174 (1988).

    Article  Google Scholar 

  2. A. Winkler, Ch. Resch, and K. D. Rendulic, Aluminum hydride desorption from hydrogen covered aluminum single crystal surfaces, J. Chem. Phys., 95, No. 10, 7682–7688 (1991).

    Article  Google Scholar 

  3. C. Wolverton, V. Ozolins, and M. Asta, Hydrogen in aluminium: First-principle calculation of structure and thermodynamics, Phys. Rev. Â, 69, 144109 (2004).

    Article  Google Scholar 

  4. M. Lindenblatt, J. van Heys, and E. Pehlke, Molecular dynamic of nonadiabatic processes at surfaces: chemisorption of H/Al (111), Surf. Sci., 600, 3624–3628 (2006).

    Article  Google Scholar 

  5. W. Moritz, R. Imbihl, G. Ertl, and T. Matshuma, Adsorption geometry of hydrogen on Fe (110), J. Chem. Phys., 83, No. 4, 1959–1968 (1985).

    Article  Google Scholar 

  6. K. Christmann, G. Ertl, and T. Pignet, Adsorption of hydrogen on a Pt (111) surface, Surf. Sci., 54, 365–392 (1976).

    Article  Google Scholar 

  7. K. Christmann, R. J. Behm, G. Ertl, P. Van Hove, and W. Weinberg, Chemisorption geometry of hydrogen on Ni (111) — order and disorder, J. Chem. Phys., 70, 4168–4172 (1979).

    Article  Google Scholar 

  8. O. Gunnarsson, H. Hjelmberg, and B. I. Lundquist, Calculation of geometries and chemisorption energies of atoms on simple metals, Surf. Sci., 63, 348–357 (1977).

    Article  Google Scholar 

  9. O. P. Burmistrova, G. G. Vladimirov, and S. M. Dunaevskii, Density functional formalism in the adsorption theory. 1. Hydrogen on a metal, Fiz. Tverd. Tela, 22, No. 3, 836–840 (1980).

    Google Scholar 

  10. L. S. Smirnov and E. L. Smirnov, Calculation of the vibrational spectrum of hydrogen adsorbed on the aluminum (100) surface by the method of molecular dynamics, Fiz. Tverd. Tela, 32, No. 1, 110–115 (1990).

    Google Scholar 

  11. G. Lu and E. Kaxiras, Hydrogen embrittlement of aluminum: the crucial role of vacancies, Phys. Rev. Lett., 94, 155501 (2005).

    Article  Google Scholar 

  12. S. Linderoth, Hydrogen diffusivity in aluminium, Phil. Mag. Lett., 57, 229–234 (1988).

    Article  Google Scholar 

  13. E. Hashimoto and T. Kino, Hydrogen diffusion in aluminium at high temperatures, J. Phys. F: Met. Phys., 13, 1157–1163 (1983).

    Article  Google Scholar 

  14. X. Ke, A. Kuwabara, and I. Tanaka, Cubic and orthorhombic structures of aluminum hydride AlH3 predicted by a first-principles study, Phys. Rev. B, 71, 184107 (2005).

    Article  Google Scholar 

  15. M. Hàrà, K. Domen, and T. Onishi, Formation and desorption of aluminum hydride from hydrogen adsorbed aluminum surfaces, Surf. Sci., 242, 459–463 (1991).

    Article  Google Scholar 

  16. V. Kon, Electronic structure of a substance — wave functions and density functionals. Nobel lectures in chemistry–1998, Usp. Fiz. Nauk, 172, No. 3, 336–348 (2002).

    Article  Google Scholar 

  17. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, et al., First principal computation of material properties: ABINIT software project, Comput. Mater. Sci., 25, 478–495 (2002).

    Article  Google Scholar 

  18. D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett., 45, 566–569 (1980).

    Article  Google Scholar 

  19. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45, 13244–13249 (1992).

    Article  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  Google Scholar 

  21. N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993– 2006 (1991).

    Article  Google Scholar 

  22. S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Phys. Rev. B, 54, 1703– 1710 (1996).

    Article  Google Scholar 

  23. C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19, 577–593 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  24. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188–5192 (1976).

    Article  MathSciNet  Google Scholar 

  25. N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Thermal contraction and disordering of the Al (110) surface, Phys. Rev. Lett., 82, 3296–3299 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Zaitsev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 3, pp. 511–523, May–June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A.L., Pleskachevskii, Y.M. & Chizhik, S.A. Investigation of the adsorption and diffusion interaction of atomic hydrogen with low-index surfaces of crystal aluminum nanoplates. J Eng Phys Thermophy 84, 554–566 (2011). https://doi.org/10.1007/s10891-011-0504-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0504-x

Keywords

Navigation