Skip to main content
Log in

Characteristic features of evaporative cooling of droplets in high-temperature flows

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Numerical investigation of the evaporative cooling of water droplets in a high-temperature gas flow (temperature above 1000°C) has been carried out for two limiting regimes: a continuous medium and a free-molecular regime. The results of modeling have shown that with a small content of water vapor in the flow, due to evaporative cooling the droplet temperature attains a stationary value that is lower than the stream temperature by hundreds of degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Fuks, Evaporation of Drops in a Gaseous Medium [in Russian], Nauka, Moscow (1955).

    Google Scholar 

  2. S. P. Fisenko, A. A. Brin, and A. I. Petruchik, Evaporative cooling of water in a mechanical draft cooling tower, Int. J. Heat Mass Transfer, 47, 167–177 (2004).

    Article  Google Scholar 

  3. A. A. Brin, Evaporation of water drops in a high-temperature gas flow, in: Heat and Mass Transfer-2008, ITMO im. A. V. Lykova, Minsk (2009), pp. 147–150.

    Google Scholar 

  4. A. P. Grinin and A. A. Lezova, Stationary concentration establishment in a growing or evaporating droplet of ideal binary solution, Colloid J., 68, No. 6, 759–768 (2006).

    Article  Google Scholar 

  5. P. A. Kryukov, V. Y. Levashov, and S. S. Sazhin, Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models, Int. J. Heat Mass Transfer, 47, 2541–2549 (2004).

    Article  MATH  Google Scholar 

  6. S. P. Fisenko and A. A. Brin, Heat and mass transfer and condensation interference in a laminar flow diffusion chamber, Int. J. Heat Mass Transfer, 49, 1004–1014 (2006).

    Article  MATH  Google Scholar 

  7. S. P. Fisenko, W. N. Wang, I. W. Lenggoro, and K. Okyuama, Evaporative cooling of micron-sized droplets in a low-pressure aerosol reactor, Chem. Eng. Sci., 61, 6029–6034 (2006).

    Article  Google Scholar 

  8. S. P. Fisenko and J. A. Khodyko, Low pressure evaporative cooling of micron-sized droplets of solutions and its novel applications, Int. J. Heat Mass Transfer, 52, 3842–3849 (2009).

    Article  MATH  Google Scholar 

  9. L. Talbot, R. K. Cheng, R. W. Schaefer, and D. R. Willis, Thermophoresis of particles in a heated boundary layer, J. Fluid. Mech., 101, 737–758 (1980).

    Article  Google Scholar 

  10. V. M. Verzhbitskii, Principles of Numerical Methods [in Russian], Nauka, Moscow (2002).

    Google Scholar 

  11. H. Matsuoka, S. Sekiguchi, K. Nishizawa, and T. Suzuki, Midinfrared extinction spectra of submicron carbohydrate particles generated by a pneumatic atomizer, J. Phys. Chem. A, 113, 4686–4690 (2009).

    Article  Google Scholar 

  12. S. P. Fisenko and Yu. A. Khodyko, Kinetics of the Formation of Ensembles of Nanoparticles in Evaporation of Solution Droplets, Preprint No. 7 of the A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Fisenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 2, pp. 274–279, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brin, A.A., Fisenko, S.P. & Khodyko, Y.A. Characteristic features of evaporative cooling of droplets in high-temperature flows. J Eng Phys Thermophy 84, 292–297 (2011). https://doi.org/10.1007/s10891-011-0472-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0472-1

Keywords

Navigation