Skip to main content
Log in

Modeling of iron scale reduction by methane conversion products in a plasma jet. I. Thermodynamic modeling

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

We have performed thermodynamic modeling of the reduction of iron scale (production waste of metallurgy and machine-building) by products of incomplete conversion of methane in oxygen for developing a process of obtaining iron powder with the use of a plasma jet. We have calculated the equilibrium composition of the gas phase and condensed interaction products at various temperatures and initial compositions of the reducing medium. The optimal process parameters providing reduction of scale to pure iron, i.e., the temperature range, the methane/oxygen ratio in the gaseous medium, and the scale/gas mixture mass ratio, have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bahgat, M. H. Khedr, M. I. Nasr, and E. K. Sedeek, Effect of firing temperature and reducing gas composition during low-temperature reduction of nanocrystalline Fe2O3, Metall. Mater. Trans. B, 38, No. 1, 5–11 (2007).

    Article  Google Scholar 

  2. A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Pt. II. Low temperature reduction of magnetite, Thermochim. Acta, 456, No. 2, 75–88 (2007).

    Article  Google Scholar 

  3. Yu. V. Tsvetkov and S. A. Panfilov, Low-Temperature Plasma in Reduction Processes [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  4. Yu. I. Krasnokutskii and V. G. Vereshchak, Obtaining of Refractory Compounds in Plasma [in Russian], Vysshaya Shkola, Kiev (1987).

    Google Scholar 

  5. Yu. M. Zhorov, Thermodynamics of Petrochemical Processes: Petrochemical Synthesis, Oil Refining, and Coal, and Natural Gas Processing [in Russian], Khimiya, Moscow (1985).

    Google Scholar 

  6. V. E. Alemasov, A. F. Dregalin, A. P. Tishin, and V. A. Khudikov, Thermodynamic and Thermal Properties of Combustion Products [in Russian], Izd. AN SSSR, Moscow (1971).

    Google Scholar 

  7. L. P. Ruzinov and B. S. Gulyanitskii, Equilibrium Conversion of Chemical Reaction [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  8. E. T. Turkdogan, Physical Chemistry of High-Temperature Processes [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  9. G. V. Belov, Thermodynamic Modeling: Methods, Algorithms, Programs [in Russian], Nauchnyi Mir, Moscow (2002).

    Google Scholar 

  10. A. N. Silenko and G. N. Elmanov, Analysis of the processes of chemical transport in iodide systems containing titanium and aluminum intermetallides, Fiz. Khim. Obrab. Mater., No. 3, 80–84 (2009).

  11. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  12. G. Eriksson and K. Hack, ChemSage — a complex program for the calculation of complex chemical equilibria, Metal. Trans. B, 21, No. 12, 1013–1023 (1990).

    Google Scholar 

  13. P. Vonka and J. Leitner, Calculation of chemical equilibria in heterogeneous multicomponent systems, CALPHAD, 19, No. 1, 25–36 (1995).

    Article  Google Scholar 

  14. G. B. Sinyarev, N. A. Vatolin, B. G. Trusov, and G. K. Moiseev, Use of Computers for Thermodynamic Calculations of Metallurgical Processes [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  15. N. A. Vatolin, G. K. Moiseev, and B. G. Trusov, Thermodynamic Modeling of Metallurgical Processes [in Russian], Metallurgiya, Moscow (1994).

    Google Scholar 

  16. V. P. Glushko (Ed.), Thermodynamic Properties of Individual Compounds [in Russian], vols. 1–4, Nauka, Moscow (1982).

    Google Scholar 

  17. O. Kubaschevski and S. B. Olkokk, Metallurgical Thermochemistry [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  18. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin (1973).

    Google Scholar 

  19. I. Barin, O. Knacke, and O. Kubaschevski, Thermochemical Properties of Inorganic Substances: Supplement, Springer-Verlag, Berlin (1977).

    Google Scholar 

  20. M. W. Chase, jr., NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, Monograph 9, 1–1951 (1998).

    Google Scholar 

  21. R. Y. Chen and W. Y. D. Yeun, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxid. Metals, 59, No. 5–6, 433–468 (2003).

    Article  Google Scholar 

  22. P. A. Vityaz’, V. S. Ivashko, A. F. Il’yushchenko, A. I. Shevtsov, and E. D. Manoilo, Theory and Practice of Application of Protective Coatings [in Russian], Belorusskaya Nauka, Minsk (1998).

    Google Scholar 

  23. O. Kubaschevski, State Diagrams of Iron-Based Double Systems: Handbook [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Khina.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 84, No. 2, pp. 263–269, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khina, B.B., Grinchuk, P.S. Modeling of iron scale reduction by methane conversion products in a plasma jet. I. Thermodynamic modeling. J Eng Phys Thermophy 84, 280–286 (2011). https://doi.org/10.1007/s10891-011-0470-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0470-3

Keywords

Navigation