Skip to main content
Log in

On certain regimes of inclusion drift in acoustic fields

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The inclusion drift in acoustic fields is investigated by analytical methods. A formula for the total force acting on a spherical inclusion with allowance for the compressibility of the carrier phase and the inclusion is obtained. A formula for the frequency after which the total force changes its direction is derived. The total-force directional diagram proposed by the authors earlier is refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Pts. 1, 2, Nauka, Moscow (1987).

    Google Scholar 

  2. R. F. Ganiev and L. E. Ukrainskii, Nonlinear Wave Mechanics and Technology [in Russian], Izd. R&C Dynamics, Moscow (2008).

    Google Scholar 

  3. Shih-Yi Tsai and Bernard Otterman, Particle collection by means of low frequency sound waves, Atmospheric Environment, 8, Issue 9, September 1974, pp. 873–884.

    Article  Google Scholar 

  4. P. Vainshtein, M. Fichman, and D. Pnueli, On the drift of aerosol particles in sonic fields, J. Aerosol Sci., 23, 631–637 (1992).

    Article  Google Scholar 

  5. P. Vainshtein, M. Fichman, K. Shuster, and C. Gutfinger, The effect of centreline particle concentration in a wave tube, J. Fluid Mech., 306, 31–42 (1996).

    Article  Google Scholar 

  6. V. F. K. Bjerknes, Die Kraftfelder, Vieweg und Sohn, Braunschweig, Germany (1909).

    MATH  Google Scholar 

  7. A. Doinikov, Viscous effect of force between two bubbles, J. Acoust. Soc. Am., 111, No. 4, 1602–1609 (2002).

    Article  Google Scholar 

  8. S. S. Dukhin, Theory of the drift of an aerosol particle in a standing acoustic wave, Kolloidn. Zh., 22, No. 1, 128–130 (1960).

    Google Scholar 

  9. E. P. Mednikov, Acoustic Coagulation and Deposition of Aerosols [in Russian], Izd. AN SSSR, Moscow (1963).

    Google Scholar 

  10. N. A. Fuks, Mechanics of Aerosols [in Russian], Izd. AN SSSR, Moscow (1955).

    Google Scholar 

  11. H. Czyz, On the concentration of aerosol particles by means of drift forces in a standing wave field, Acustica, 70, 23–28 (1990).

    Google Scholar 

  12. I. N. Kanevskii, Constant forces appearing in a sonic field, Akust. Zh., 7, Issue 1, 3–17 (1961).

    MathSciNet  Google Scholar 

  13. L. King, On the acoustic radiation pressure on spheres, Proc. Roy. Soc. A, 147, 212–240 (1934).

    Article  Google Scholar 

  14. P. J. Westervelt, The mean pressure and velocity in a plane acoustic wave in a gas, J. Acoust. Soc. Am., 22, No. 3, 319–327 (1950).

    Article  MathSciNet  Google Scholar 

  15. P. J. Westervelt, The theory of steady forces caused by sound waves, J. Acoust. Soc. Am., 23, No. 4, 312–315 (1951).

    Article  MathSciNet  Google Scholar 

  16. P. J. Westervelt, Acoustic radiation pressure, J. Acoust. Soc. Am., 29, No. 1, 26–29 (1957).

    Article  Google Scholar 

  17. K. Yosioka and G. Kawasima, Acoustic radiation pressure on compressible spheres, Acustica, 5, 167–173 (1955).

    Google Scholar 

  18. K. Yosioka, G. Kawasima, and H. Hirano, Acoustic radiation pressure on bubbles and their logarithmic decrement, Acustica, 5, 173–178 (1955).

    Google Scholar 

  19. L. P. Gor’kov, On the forces acting on a small particle in an acoustic field in an ideal fluid, Dokl. AN SSSR, 140, No. 1, 88–91 (1961).

    Google Scholar 

  20. H. Czyz, The aerosol particle drift in a standing wave field, Arch. Acoust., 12, Nos. 3–4, 199–214 (1987).

    Google Scholar 

  21. H. Czyz and J. K. Snakowski, Influence of acoustical field on small particles, J. Phys., 4, 861–864 (1994).

    Google Scholar 

  22. A. G. Kutushev, Non-Stationary Shock Waves in Two-phase Gas-Particle or Gas-Droplet Mixtures, Nedra, St. Petersburg (2003).

    Google Scholar 

  23. A. Goldshtein, K. Shuster, P. Vainshtein, M. Fichman, and C. Gutfinger, Particle motion in resonance tubes, J. Fluid Mech., 360, 1–20 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. A. Gubaidullin and P. P. Osipov, Influence of hydrodynamic forces on the drift of inclusions in wave fields, Izv. Vyssh. Uchebn. Zaved., Probl. Énerg., Nos. 1–2, 3–13, Kazan’ (2010).

  25. D. T. Shaw and N. Rajendran, Application of acoustic agglomerators for emergency use in liquid-metal fast breeder reactor plants, Nucl. Sci. Eng., 70, 127–134 (1979).

    Google Scholar 

  26. O. Brand and E. Hiedemann, Ueber das Verhalten von Aerosolen im akustischen Feld, Kolloid Z., Bd. 75, H. 2, S. 129–135 (1936).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Osipov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubaidullin, D.A., Osipov, P.P. On certain regimes of inclusion drift in acoustic fields. J Eng Phys Thermophy 84, 270–279 (2011). https://doi.org/10.1007/s10891-011-0469-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-011-0469-9

Keywords

Navigation