Skip to main content

Advertisement

Log in

Current status of the problem of heat pumps and refrigerating devices

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

In connection with the limited energy reserves in the Republic of Belarus, it is expedient to use sorption heat pumps and refrigerators in heating and refrigeration supply systems. Such heat engines possess a unique capability of utilizing the heat of low-temperature energy sources: water ponds, groundwater, and waste water and steam in combination with traditional heaters of rooms (boilers, furnaces, etc.). Adsorption reversible heat pumps developed at the A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus make it possible to obtain 20 to 30 kW/m3 of thermal energy and up to 5 kW/m3 of cold. Such heat pumps save up to 15–20% of primary energy (fuel) for production of electricity, heat, and cold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Meunier, Sorption contribution to climate change mitigation, in: Proc. Int. Conf. Sorption Heat Pumps, 24–27 September, 2002, Shanghai (2002), pp. 1–9.

  2. Yu. I. Aristov, Certain environmental and economical aspects of using adsorption thermal facilities in Russia, Khim. Ustoich. Razvit., 12, 751–755 (2004).

    Google Scholar 

  3. L. L. Vasiliev, L. E. Kanonchik, and A. A. Antukh, Contemporary thermodynamic cycles in power engineering — a means of decreasing ejections of carbon dioxide into the atmosphere and increasing the efficiency of electric power stations, Énergoéffektivnost’, No. 11, 16–18 (2002).

  4. L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, and L. L. Vasiliev Jr., Solar–gas solid sorption heat pump, in: Proc. Int. Sorption Heat Pump Conf. (ISHPC), 24–26 March, 1999, Munich, Germany (1999), pp. 117–122.

  5. L. L. Vasiliev, D. Nikanpour, A. A. Antukh, K. Snelson, L. L. Vasiliev Jr., and A. Lebru, Multisalt-carbon chemical cooler for space applications, in: Proc. Int. Sorption Heat Pump Conf. (ISHPC), 24–26 March, 1999, Munich, Germany (1999), pp. 579–583.

  6. G. Restuccia, A. Freni, and G. Cacciola, Adsorption beds of zeolite on aluminum sheets, in: Proc. Int. Sorption Heat Pump Conf. (ISHPC), 24–26 March, 1999, Munich, Germany (1999), pp. 343–347.

  7. L. L. Vasiliev and S. L. Vaaz, Freezing and Heating of Ground by Cooling Devices [in Russian], Nauka i Tekhnika, Minsk (1986), 192 p.

  8. F. Meunier (Ed.), Proceedings of Solid Sorption Refrigeration Symposium, 18–20 November, 1992, Paris (1992).

  9. D. Nikanpour and S. Hosatte (Eds.),Towards sustainable technologies, in: Proc. Absorption Heat Pump Conf., 17–20 September, 1996, Montreal, Canada (1996).

  10. C. Schweigler, S. Summerer. H-M. Hellmann, and F. Ziegler (Eds.), Proc. Int. Sorption Heat Pump Conf. (ISHPC 1999), 24–26 March, 1999, Munich, Germany (1999).

  11. Ruzhu Wang, Zhen Lu, Wen Wang, and Xinghua Huang (Eds.), Proc. Int. Sorption Heat Pump Conf. (ISHPC 2002), Science Press New York Ltd, 24–27 September, 2002, Shanghai, China, 2002.

  12. Yu. I. Aristov, L. L. Vasil’ev, and V. E. Nakoryakov, Chemical and sorption heat engines: state of the art and development prospects, Inzh.-Fiz. Zh., 81, No. 1, 19–48 (2008).

    Google Scholar 

  13. I. Yaron and I. Borde, Working fluids for heat pumps, VDI–Berichte 539, ORC–HP–Technology, VDI, Dusseldorf (1984), pp. 145–162.

  14. I. Borde, M. Jelinek, and N. Daltrophe, Working fluids for an absorption system based on R124/2–chloro–1,1,12–tetrafluoroethane and organic absorbents, Int. J. Refrigeration, 20, No. 4, 256–266 (1996).

    Article  Google Scholar 

  15. M. Ishikawa, H. Kayanuma, and N. Isshiki, Absorption heat pump using new organic working absorbents, in: Proc. Int. Sorption Heat Pump Conf., (ISHPC 1999), 24–26 March, 1999, Munich, Germany (1999), pp. 197–204.

  16. Y. T. Kang, K. Iizuka, A. Akisawa, and T. Kashiwagi, Experiments on heat transfer additives for NH3–H2O solution, in: Proc. Int. Sorption Heat Pump Conf., (ISHPC 1999), 24–26 March, 1999, Munich, Germany (1999), pp. 291–296.

  17. F. Ziegler and G. Grossman, Review paper: heat transfer enhancement by additives, Int. J. Refrigeration, 19, No. 5, 301–309 (1996).

    Article  Google Scholar 

  18. L. Hoffman and F. Ziegler, Heat and mass transfer enhancement by additives in NH3–H2O, in: Proc. Int. Sorption Heat Pump Conf., (ISHPC 1999), 24–26 March, 1999, Munich, Germany (1999), pp. 297–300.

  19. K. E. Herold, R. Rademacher, and S. A. Klein, Absorption chillers and heat pumps, CRC Press, Boca Ratan, FL (1996).

    Google Scholar 

  20. K. Hunold, Kalteerzeugungg mit Adsorptionstechnik — Prinzip, Einsatzmoglichkeiten, Vor- und Nachteiler, erste Betriebsehrfahrungen, in: Wirtschaftliche Warmenutzung in Industrie und Gewerbe VDI — Berichte 1296, VDI, Dusseldorf (1997), S. 227–242.

  21. Yu. I. Aristov, M. M. Burger, W. Parmon, G. Restuccia, H.-D. Burger, W. Mittelbach, and H.-M. Henning, New working materials for sorption cooling/heating driven by low temperature heat: properties, in: Proc. Int. Sorption Heat Pump Conf. (ISHPC 1999), 24–26 March, 1999, Munich, Germany (1999), pp. 247–254.

  22. L. L. Vasiliev, N. V. Gulko, and V. M. Khaustov, Solid adsorption refrigerators with active carbon–acetone and carbon–ethanol pairs, in: Proc. Solid Sorption Refrigeration Symp., 18–20 November, 1992, Paris (1992), pp. 92–99.

  23. L. L. Vasiliev, L. E. Kanonchik, V. V. Khrolenok, D. A. Mishkinis, and A. S. Zhuravlyov, Activated carbon ammonia and natural gas adsorption storage, in: Proc. 23rd Biennial Conf. on Carbon (Carbon’97), 18–23 July 1997, Extended Abstracts and Program, Vol. I, Adsorption/Reactivity Intercalation, University Park Campus, PennState (1997), pp. 334–335.

  24. L. L. Vasiliev and Yu. E. Fraiman, Thermophysical Properties of Poor Heat Conductors [in Russian], Nauka i Tekhnika, Minsk (1967), 187 p.

  25. L. L. Vasiliev and S. A. Tanaeva, Thermophysical Properties of Porous Materials [in Russian], Nauka i Tekhnika, Minsk (1971), 230 p.

  26. A. V. Luikov, A. G. Shashkov, L. L. Vasiliev, and Yu. E. Fraiman, Thermal conductivity of porous systems, Int. J. Heat Mass Transfer, 11, 117–140 (1968).

    Article  Google Scholar 

  27. N. Mazet, S. Moran, and P. Jolly, Dimensionless analysis of main limitations in solid–gas reactive blocks for solid sorption machines, in: Proc. Int. Sorption Heat Pump Conf. (ISHPC 1999), 24–26 March, 1999, Munich, Germany (1999), pp. 337–341.

  28. L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, A. G. Kulakov, and L. L. Vasiliev Jr., Resorption heat pumps, Appl. Therm. Eng., 24, 1893–1903 (2004).

    Article  Google Scholar 

  29. F. Meunier, Adsorption heat pump technology: possibilities and limits, in: Proc. Int. Sorption Heat Pump Conf. (ISHPC 1999), 24–26 March, 1999, Munich, Germany (1999), pp. 25–35.

  30. L. L. Vasiliev, Use of the Earth’s energy with the aid of heat pipes, Inzh.-Fiz. Zh., 59, No. 3, 488–491 (1990).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Vasiliev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 4, pp. 763–778, July–August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, L.L. Current status of the problem of heat pumps and refrigerating devices. J Eng Phys Thermophy 83, 815–831 (2010). https://doi.org/10.1007/s10891-010-0405-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0405-4

Keywords

Navigation