Skip to main content
Log in

Layer in magnetoabrasive polishing

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A consistent physicomathematical model of the propagation of an electromagnetic wave in a heterogeneous medium has been constructed with the use of the generalized wave equation and Dirichlet theorem. Twelve conditions at the interfaces between adjoining media were obtained and substantiated without using, in an explicit form, the surface charge and surface current. The conditions are fulfilled automatically in each section of the heterogeneous medium and are conjugate, thus making it possible to use schemes of through counting for calculations. The effect of the concentration of "medium-frequency" waves with length of the order of hundreds of meters at the fractures and wedges of domains of size 1–3 μm has been established for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. P. Shul’man and V. I. Kordonskii, Magnetorheological Effect [in Russian], Nauka i Tekhnika, Minsk (1982).

    Google Scholar 

  2. A. P. Rakomsin, Strengthening and Restoration of Items in an Electromagnetic Field [in Russian], Paradoks, Minsk (2000).

    Google Scholar 

  3. V. S. Savenko, Mechanical Twinning in Metals under the Conditions of External Energy Effects [in Russian], Tekhnoprint, Minsk (2000).

    Google Scholar 

  4. N. S. Akulov, Ferromagnetism [in Russian], ONTI, Moscow–Leningrad (1939).

  5. N. S. Akulov, Dislocations and Plasticity [in Russian], Izd. AN BSSR, Minsk (1961).

    Google Scholar 

  6. S. I. Postnikov (Ed.), Processing by a pulsed magnetic field, in: Proc. 4th Scientific-Technical Seminar on Nontraditional Technologies in Mechanical Engineering, Sofia–Gorkii (1989).

  7. V. I. Spitsyn and O. A. Troitskii, Electroplastic Deformation of Metals [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  8. M. N. Levin, A. V. Tatarintsev, O. A. Kostsova, and A. M. Kostsov, Activation of the surface of semiconductors by the effect of a pulsed magnetic field, Zh. Tekh. Fiz., 73, Issue 10, 85–87 (2003).

    Google Scholar 

  9. A. M. Orlov, A. A. Skvortsov, and L. I. Gonchar, Magnetic- stimulated alteration of the mobility of dislocations in the plastically deformed silicon of n-type, Fiz. Tverd. Tela, 43, Issue 7, 1207–1210 (2001).

    Google Scholar 

  10. V. A. Makara, L. P. Steblenko, N. Ya. Gorid’ko, V. M. Kravchenko, and A. N. Kolomiets, On the influence of a constant magnetic field on the electroplastic effect in silicon crystals, Fiz. Tverd. Tela, Issue 3, 462–465 (2001).

  11. Yu. I. Golovin, A. A. Dmitrievskii, V. E. Ivanov, N. Yu. Suchkova, and M. Yu. Tolotaev, Influence of weak magnetic fields on the dynamics of changes in the microhardness of silicon initiated by low-intensity beta-irradiation, Fiz. Tverd. Tela, 49, Issue 5, 822–823 (2007).

    Google Scholar 

  12. Yu. I. Golovin and R. B. Morgunov, Magnetoresonance weakening of crystals, Priroda, No. 8, 49–57 (2002).

    Google Scholar 

  13. M. A. Khudyakov and R. R. Altynova, Influence of a constant magnetic field on the cyclic fracturing stability and corrosion stability of the 17G1S steel, Neftegaz. Delo, 4, No. 1, 23–32 (2006).

    Google Scholar 

  14. Yu. I. Golovin, R. B. Morgunov, A. A. Baskakov, M. V. Badylevich, and S. Z. Shmurak, Influence of a magnetic field on the plasticity, photo- and electroluminescence of ZnS single crystals, Pis’ma Zh. Éksp. Teor. Fiz., 69, Issue 2, 114–118 (1999).

    Google Scholar 

  15. V. A. Makara, M. A. Vasil’ev, L. P. Steblenko, O. V. Koplak, A. N. Kurilyuk, Yu. L. Kobzar’, and S. N. Naumenko, Magnetic field-induced changes in the impurity composition and microhardness of the near-surface layers of silicon crystals, Fiz. Tekh. Poluprovodn., 42, Issue 9, 1061–1064 (2008).

    Google Scholar 

  16. Yu. A. Osip’yan, R. B. Morgunov, A. A. Baskakov, A. M. Orlov, A. A. Skvortsov, E. N. Inkina, and J. Tanimoto, Magnetoresonance hardening of silicon single crystals, Pis’ma Zh. Éksp. Teor. Fiz., 79, Issue 3, 158–162 (2004).

    Google Scholar 

  17. A. M. Orlov, A. A. Skvortsov, and A. A. Solov’ev, Dynamics of the surface dislocation ensembles in silicon in the presence of mechanical and magnetic perturbations, Fiz. Tverd. Tela, 45, Issue 4, 613–617 (2003).

    Google Scholar 

  18. C. Kittel, Introduction to Solid State Physics [Russian translation], Nauka, Moscow (1978).

    Google Scholar 

  19. A. P. Semenov, Setting of Metals [in Russian], Mashgiz, Moscow (1958).

    Google Scholar 

  20. P. P. Miloshevskii, Principles of Discharge-Pulse Technology [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  21. V. S. Ivanova, L. K. Gorodnenko, V. N. Geminov, et al., Role of Dislocations in Hardening and Destruction of Metals [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  22. N. N. Grinchik and A. P. Dostanko, Influence of Thermal and Diffusion Processes on the Propagation of Electromagnetic Waves in Laminated Materials, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk (2005).

  23. M. Born and E. Wolf, Principles of Optics [Russian translation], Mir, Moscow (1970).

    Google Scholar 

  24. I. I. Monzon, T. Yonte, and L. L. Sanchez-Soto, Characterizing the reflectance of periodic laser media, Opt. Comm., 218, 43–47 (2003).

    Article  Google Scholar 

  25. Y. Eremin and T. Wriedt, Large dielectric non-spherical particle in an incident wave field near a plane surface, Opt. Commun., 214, 34–45 (2002).

    Article  Google Scholar 

  26. D. H. Sedrakin, A. H. Gevorgyan, and A. Zh. Khachatrian, Transmission of plane electromagnetic wave obliquely incident on a one-dimensional isotropic dielectric medium with an arbitrary reflective index, Opt. Commun., 195, 35–56 (2001).

    Article  Google Scholar 

  27. A. M. Dykhne and I. M. Kasanova, The Leontovich boundary conditions and calculations of effective impedance of homogeneous metal, Opt. Commun., 206, 35–56 (2002)

    Article  Google Scholar 

  28. O. Barta, I. Pistora, I. Vesec, et al., Magneto-optics in bi-gyrotropic garnet waveguide, Opto-electron. Rev., 9(3), 320–325 (2001).

    Google Scholar 

  29. V. P. Red’ko, A. V. Khomchenko, and V. A. Érevich, Automodulation of laser radiation reflected from a twocavity resonance medium, Dokl. Nats. Akad. Nauk Belarusi, 47, No. 1, 57–61 (2003).

    Google Scholar 

  30. A. O. Kas’yanov and V. A. Obukhovets, Intellectual radioelectronic coatings. State of the art and problems. Review, Antenny, Issue 4(50), 4–11 (2001).

    Google Scholar 

  31. Wei Hu and Hong Guo, Ultrashort pulsed Bessel beams and spatially induced group-velocity dispersion, J. Opt. Soc. Am. B, 19, No. 1, 49–52 (2002).

    Article  MathSciNet  Google Scholar 

  32. Danae Delbeke, P. Bienstman, R. Bockstaele, and R. Baets, Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating–assisted resonant-cavity light-emitting diode, J. Opt. Soc. Am. B, 19, No. 5, 871–881 (2002).

    Article  Google Scholar 

  33. I. Broe and O. Keller, Quantum-well enhancement of the Goos–Hanchen shift for p-polarized beams in a twoprism configuration, J. Opt. Soc. Am. B, 19, No. 6, 1212–1221 (2002).

    Article  Google Scholar 

  34. J. I. Larruquert, Reflectance enhancement with sub-quarterwave multilayers of highly absorbing materials, J. Opt. Soc. Am. B, 18, No. 6, 1406–1415 (2001).

    Article  Google Scholar 

  35. I. Simonsen, D. Vanderbrouoq, and S. Roux, Electromagnetic wave scattering from conducting self-affine surfaces: an analytic and numerical study, J. Opt. Soc. Am. B, 18, No. 5, 1101–1111 (2001).

    Article  Google Scholar 

  36. J. M. Bendikson, E. N. Glytsis, T. K. Gaslord, and A. F. Peterson, Modeling considerations for rigorous boundary element method analysis of diffractive optical elements, J. Opt. Soc. Am. B, 18, No. 7, 1495–1506 (2001).

    Article  Google Scholar 

  37. K. A. O’Donnell, High-order perturbation theory for light scattering from a rough metal surface, J. Opt. Soc. Am. B, 18, No. 7, 1507–1516 (2001).

    Article  Google Scholar 

  38. B. M. Koludzija, Electromagnetic modeling of composite metallic and dielectric structures, IEEE Trans. Microwave Theory Tech., 47, No. 7, 1021–1029 (1999).

    Article  Google Scholar 

  39. R. A. Ehlers and A. C. Metaxas, 3-DFE discontinuous sheet for microwave heating, IEEE Trans. Microwave Theory Tech., 51, No. 3, 718–726 (2003).

    Article  Google Scholar 

  40. T. Tischler and W. Heinrich, The perfectly matched layer as a lateral boundary in finite-difference transmissionline analysis, J. Opt. Soc. Am. A, 48, No. 12, 2249–2257 (2000).

    Google Scholar 

  41. M. K. Karkkainen and S. A. Tretyakov, A class of analytical absorbing boundary conditions originating from the exact surface impedance boundary conditions, J. Opt. Soc. Am. A, 51, No. 2, 561–577 (2003).

    Google Scholar 

  42. F. L. Teixeira, C. D. Moss, W. C. Chewand, and Jim A. Kong, Split-field and anisotropic-medium PML–FDID implementations for inhomogeneous media, J. Opt. Soc. Am. A, 50, No. 1, 31–38 (2002).

    Google Scholar 

  43. Le-Weili, Xiao-Kang Hang, Pans-Shyan Kooi, and Tat-Soon Yeo, Electromagnetic dyadic Green’s functions for multilayered spheroidal structures–1: Formulation, J. Opt. Soc. Am. A, 49, No. 3, 532–541 (2001).

    Google Scholar 

  44. O. Keller, Optical responses of a quantum-well sheet: internal electrodynamics, J. Opt. Soc. Am. B, 12, No. 6, 997–1005 (1995).

    Article  Google Scholar 

  45. O. Keller, Sheet-model description of the linear optical response of quantum wells, J. Opt. Soc. Am. B, 12, No. 6, 987–997 (1995).

    Article  Google Scholar 

  46. O. Keller, Local fields in linear and nonlinear optics of mesoscopic system, Prog. Opt., 37, 257–343 (1997).

    Article  Google Scholar 

  47. L. D. Kudryavtsev, Mathematical Analysis [in Russian], Vol. 2, Mir, Moscow (1970).

    Google Scholar 

  48. A. N. Frumkin, Electrode Processes [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  49. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  50. N. N. Grinchik, V. A. Zhuk, A. A. Khmyl’, and V. A. Tsurko, Interaction of thermal and electric phenomena in polarized media, Mat. Modelir., 12, No. 11, 67–76 (2000).

    MATH  Google Scholar 

  51. I. P. Bazarov, Thermodynamics: Textbook for Higher Educational Establishments [in Russian], 4th ed., Vysshaya Shkola, Moscow (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Grinchik.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 3, pp. 598–607, May–June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinchik, N.N., Korogoda, O.P. & Khomich, N.S. Layer in magnetoabrasive polishing. J Eng Phys Thermophy 83, 638–649 (2010). https://doi.org/10.1007/s10891-010-0386-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0386-3

Keywords

Navigation