Skip to main content
Log in

Phase transformations induced by dislocation glide in plastic deformation of alloys

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

It has been shown that in intense plastic deformation of alloys, dislocation glide gives rise to nonequilibrium phases or disperse structures. The phenomenon is due to the joint action of two factors: acceleration of diffusion and change in the chemical potential of the alloy components in the region of the dislocation core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Neverov, V. A. Burov, and P. P. Zhitnikov, Formation of compounds and solid solutions in plastic deformation of binary mixtures of elements, Izv. SO AN SSSR, Ser. Khim. Fiz. Nauk, No. 12, Issue 5, 54–62 (1983).

  2. A. E. Ermakov, Solid-phase reactions, nonequilibrium structures, and the magnetism of 3d-compounds with different types of chemical bond, Fiz. Metal. Metalloved., No. 11, 4–45 (1991).

    Google Scholar 

  3. A. Ye. Yermakov, V. L. Gapontsev, V. V. Kondratyev, Yu. N. Gornostyrev, M. A. Uimin, and A. Yu. Korobeinikov, Phase instability of nanocrystalline driven alloys, Mater. Sci. Forum, 343, 577–584 (2000).

    Article  Google Scholar 

  4. V. A. Ivchenko, M. A. Uimin, A. Ye. Yermakov, and A. Yu. Korobeinikov, Atomic structure and magnetic properties of Cu80Co20 nanocrystalline compounds produced by mechanical alloying, Surf. Sci., 40, No. 3, 420– 428 (1999).

    Article  Google Scholar 

  5. U. Czubayko, N. Wanderka, V. Naundorf, V. A. Ivchenko, A. Ye. Yermakov, M. A. Uimin, and H. Wollenberg, Characterization of nanoscaled heterogeneities in mechanically alloyed and compacted Cu–Fe, Mater. Sci. Forum, 343–346, 709–714 (2000).

    Google Scholar 

  6. V. A. Barinov, G. A. Dorofeev, L. V. Ovechkin, et al., Phase transformations in deformed Fe2B powders, Fiz. Metal. Metalloved., No. 1, 126–131 (1992).

    Google Scholar 

  7. A. E. Ermakov, V. L. Gapontsev, V. V. Kondrat’ev, and Yu. N. Gornostyrev, The phenomenon of deformationstimulated phase instability of nanocrystalline alloys, Fiz. Metal. Metalloved., 88, 5–12 (1999).

    Google Scholar 

  8. V. L. Gapontsev, I. K. Razumov, Yu. N. Gornostyrev, A. E. Ermakov, and V. V. Kondrat’ev, Theory of diffusion phase transformations in nanocrystalline alloys in intense plastic deformation, Fiz. Metal. Metalloved., 99, No. 4, 26–37 (2005).

    Google Scholar 

  9. I. K. Razumov and Yu. N. Gornostyrev, Influence of the grain boundaries on the kinetics of decomposition of solid solutions, in: Proc. of the 4th School-Seminar "Phase and Structural Transformations in Steels," Magnitogorsk (2006), pp. 99–112.

  10. I. K. Razumov, Yu. N. Gornostyrev, and A. Ye. Yermakov, Kinetics of spinodal decomposition in driven nanocrystalline alloys, J. Alloys and Compounds, 434435, 535–539 (2007).

    Article  Google Scholar 

  11. R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Obtained by Means of Intense Plastic Deformation [in Russian], Logos, Moscow (2000).

    Google Scholar 

  12. N. M. Vlasov, A. S. Gontar’, and V. A. Zaznoba, Decomposition of a solid solution on large plastic deformations of an alloy, Fiz. Tverd. Tela, 71, No. 5, 63–66 (2001).

    Google Scholar 

  13. M. Yu. Gutkin and I. A. Ovid’ko, Defects and Mechanisms of Plasticity in Nanostructural and Noncrystalline Materials [in Russian], Yanus, St. Petersburg (2001).

    Google Scholar 

  14. K. Zhang, I. V. Alexandrov, and K. Lu, The X-ray diffraction study on a nanocrystalline Cu processed by equal — channel angular pressing, NanoStruct. Mater., 9, No. 1, 347–350 (1997).

    Article  Google Scholar 

  15. A. H. Cottrell and M. A. Jaswon, Distribution of solute atoms round a slow dislocation, Proc. Roy. Soc., London, 199, No. 189, 104–114 (1949).

    MATH  Google Scholar 

  16. A. H. Cottrell, The Theory of Crystal Dislocation [Russian translation], Metallurgizdat, Moscow (1958).

    Google Scholar 

  17. B. Ya. Lyubov, Diffusion Processes in Inhomogeneous Solid Media [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  18. B. Ya. Lyubov and V. A. Shmakov, Theory of diffusion interaction of edge dislocations with new-phase precipitates, Fiz. Metal. Metalloved., 29, No. 5, 968–979 (1970).

    Google Scholar 

  19. M. Legros, G. Dehm, E. Arzt, et al., Giant diffusivity along dislocation cores, Science, 319, No. 5870, 1646– 1649 (2008).

    Article  Google Scholar 

  20. R. Yu. Rakitin, G. M. Poletaev, M. S. Aksenov, and M. D. Starostenkov, Mechanisms of diffusion over grain boundaries in two-dimensional metals, Pis’ma Zh. Tekh. Fiz., 31, Issue 15, 44–48 (2005).

    Google Scholar 

  21. É. V. Dobrokhotov, Diffusion in a dislocation Ge and the model of a "liquid" dislocation core, Fiz. Tverd. Tela, 47, Issue 12, 2166–2169 (2005).

    Google Scholar 

  22. V. G. Eremenko, V. I. Nikitenko, and E. B. Yakimov, Abnormal anisotropy of the mobility of electrons in plastically deformed silicon with a low density of dislocations, Pis’ma Zh. Eksp. Teor. Fiz., 26, Issue 2, 72–75 (1977).

    Google Scholar 

  23. J. W. Cahn, On spinodal decomposition, Acta Metall., 9, 795–806 (1961).

    Article  Google Scholar 

  24. I. K. Razumov, Influence of lattice relaxation on the kinetics of spinodal decomposition of solid solutions, Inzh.-Fiz. Zh., 82, No. 4, 643–648 (2009).

    Google Scholar 

  25. J. Christian, The Theory of Transformations in Metals and Alloys [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  26. H. Suzuki, Dislocations and Mechanical Properties of Crystals, New York (1957).

  27. E. I. Teitel’, M. A. Uimin, A. E. Ermakov, A. V. Shangurov, G. M. Makarova, V. A. Barinov, V. P. Pilyugin, and R. I. Kuznetsov, Change in the structural state and magnetic properties on annealing of a strongly deformed MnAl–C alloy, Fiz. Metal. Metalloved., No. 8, 83–89 (1990).

    Google Scholar 

  28. V. V. Sagaradze, V. A. Shabashov, T. M. Lapina, N. L. Pecherkina, and V. P. Pilyugin, Low-temperature deformation dissolution of intermetallide Ni3Al(Ti, Si, Zr) phases in Fe–Ni alloys with the fcc lattice, Fiz. Metal. Metalloved., 78, No. 6, 49–61 (1994).

    Google Scholar 

  29. A. G. Mukoseev, V. A. Shabashov, V. P. Pilyugin, and V. V. Sagaradze, Deformation-induced formation of a solid solution in the Fe–Ni system, Fiz. Metal. Metalloved., 85, 5–15 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Razumov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 3, pp. 439–446, May–June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razumov, I.K. Phase transformations induced by dislocation glide in plastic deformation of alloys. J Eng Phys Thermophy 83, 462–470 (2010). https://doi.org/10.1007/s10891-010-0366-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0366-7

Keywords

Navigation