Skip to main content
Log in

Radiation stability of carbon nanostructures

  • NANOSTRUCTURES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A theoretical study of the radiation stability of carbon nanostructures irradiated by an electron beam has been made. Calculations have been performed with the use of an analytical expression for the cross-section for scattering of relativistic electrons by carbon atoms, as well as of the data on the threshold energy of atomic displacement from the carbon lattice obtained by the molecular dynamics method. Stability limits of carbon nanostructures and basic parameters of the process have been found. The calculated values of the characteristic time of the process are in good agreement with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Suzdalev, Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures, and Nanomaterials [in Russian], KomKniga, Moscow (2006).

    Google Scholar 

  2. B. Brushan (Ed.), Springer Handbook of Nanotechnology, Springer, Berlin (2007).

    Google Scholar 

  3. M. P. Anantram and F. Leonard, Physics of carbon nanotube electronic devices, Rep. Prog. Phys., 69, No. 3, 507–561 (2006).

    Article  Google Scholar 

  4. Y.-W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature, 444, No. 7117, 347–349 (2006).

    Article  Google Scholar 

  5. C. Wang, Z.-X. Guo, S. Fu, W. Wu, and D. Zhu, Polymers containing fullerene or carbon nanotube structures, Prog. Polym. Sci., 29, No. 11, 1079–1141 (2004).

    Article  Google Scholar 

  6. S. V. Ahir, Y. Y. Huang, and E. M. Terentjev, Polymers with aligned carbon nanotubes: active composite materials, Polymer, 49, No. 18, 3841–3854 (2007).

    Article  Google Scholar 

  7. Y. Hu, O. A. Shenderova, Z. Hu, C. W. Padgett, and D. W. Brenner, Carbon nanostructures for advanced composites, Rep. Prog. Phys., 69, No. 6, 1847–1895 (2006).

    Article  Google Scholar 

  8. T. Ramanathan, A. A. Abdala, S. Stankovich, et al., Functionalized graphene sheets for polymer nanocomposites, Nature Nanotech., 3, No. 6, 327–331 (2008).

    Article  Google Scholar 

  9. M. Hirscher and M. Becher, Hydrogen storage in carbon nanotubes, J. Nanosci. Nanotech., 3, No. 1, 3–17 (2003).

    Article  Google Scholar 

  10. M. Shim, N. W. S. Kam, Y. Chen, et al., Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nanoletters, 2, No. 4, 285–288 (2002).

    Google Scholar 

  11. V. M. Biryukov, S. Bellucci, and V. Guidi, Channeling technique to make nanoscale ion beams, Nucl. Instr. Meth., B231, Nos. 1–4, 70–75 (2005).

    Google Scholar 

  12. N. I. Alekseyev and G. A. Dyuzhev, Fullerene formation in an arc discharge, Carbon, 41, No. 7, 1343–1348 (2003).

    Article  Google Scholar 

  13. D. Kasuya, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, Formation of C60 using CO2 laser vaporization of graphite at room temperature, Chem. Phys. Lett., 337, Nos. 1–3, 25–30 (2001).

    Article  Google Scholar 

  14. S. Musso, S. Porro, M. Rovere, M. Giorcelli, and A. Tagliaferro, Fluid dynamic analysis of gas flow in a thermal-CVD system designed for growth of carbon nanotubes, J. Cryst. Growth, 310, No. 2, 477–483 (2007).

    Article  Google Scholar 

  15. M. I. Katsnelson, Graphene: carbon in two dimensions, Mater. Today, 10, Nos. 1–2, 20–27 (2007).

    Article  Google Scholar 

  16. K. S. Novoselov, A. K. Geim, S. V. Morosov, et al., Electric field effect in atomically thin carbon films, Science, 306 No. 5696, 666–669 (2004).

    Article  Google Scholar 

  17. R. Van Noorden, Moving towards a graphene world, Nature, 442, No. 7100, 228–229 (2006).

    Article  Google Scholar 

  18. A. G. Chmielewski, D. K. Chmielewska, J. Michalik, and M. H. Sampa, Prospects and challenges in application of gamma, electron and ion beams in processing of nanomaterials, Nucl. Instrum. Meth., B265, No. 1, 339–346 (2007).

    Google Scholar 

  19. A. V. Krasheninnikiv and K. Nordlund, Irradiation effects in carbon nanotubes, Nucl. Instrum. Meth., B216, No. 1, 335–366 (2004).

    Google Scholar 

  20. K. H. An, K. A. Park, J. G. Heo, et al., Structural transformation of fluorinated carbon nanotubes induced by in situ electron-beam irradiation, J. Am. Chem. Soc., 125, No. 10, 3057–3061 (2003).

    Article  Google Scholar 

  21. J. Onoe, T. Nakayama, M. Aono, and T. Hara, The electron transport properties of photo- and electron-beamirradiated C60 films, J. Phys. Chem. Solids, 65, Nos. 2–3, 343–348 (2004).

    Article  Google Scholar 

  22. A. Hashimoto, H. Terasaki, A. Yamamoto, and S. Tanaka, Electron beam irradiation effect for solid C60 epitaxy on graphene, Diamond Relat. Mater., 18, Nos. 2–3, 388–391 (2009).

    Article  Google Scholar 

  23. D. M. Guldi, Radiation chemistry of fullerenes, Stud. Phys. Theor. Chem., 87, No. 1, 253–286 (2001).

    Article  Google Scholar 

  24. F. Banhart, Irradiation effects in carbon nanostructures, Rep. Prog. Phys., 62, No. 8, 1181–1221 (1999).

    Article  Google Scholar 

  25. M. R. C. Hunt, J. Schmidt, and R. E. Palmer, Electron-beam-induced fragmentation in ultrathin C60 films on Si (100)-2 x 1-H: Mechanisms of cage destruction, Phys. Rev., B60, No. 8, 5927–5937 (1999).

    Google Scholar 

  26. G. S. Was and T. R. Allen, Radiation damage from different particle types, in: (K. E. Sickafus, E. A. Kotomin, and B. P. Uberuaga Eds.), Radiation Effects in Solids, Springer, Dordrecht (2007), pp. 65–98.

    Chapter  Google Scholar 

  27. L.-C. Qin, Electron diffraction from carbon nanotubes, Rep. Prog. Phys., 69, No. 10, 2761–2821 (2006).

    Article  Google Scholar 

  28. B. W. Smith and D. E. Luzzi, Electron irradiation effects in single wall carbon nanotubes, J. Appl. Phys., 90, No. 7, 3509–3515 (2001).

    Article  Google Scholar 

  29. M. Hohenstein, A. Seeger, and W. Sigle, The anisotropy and temperature dependence of the threshold for radiation damage in gold–comparison with other FCC metals, J. Nucl. Mater., 169, No. 1, 33–46 (1989).

    Article  Google Scholar 

  30. F. Z. Cui, H. D. Li, and X. Y. Huang, Atomistic simulation of radiation damage to C60, Phys. Rev., B49, No. 14, 9962–9965 (1994).

    Google Scholar 

  31. V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl, and S. G. Louie, Anisotropic electron-beam damage and the collapse of carbon nanotubes, Phys. Rev., B54, No. 8, 5927–5931 (1996).

    Google Scholar 

  32. M. V. Makarets, Yu. I. Prylutskyy, O. V. Ogloblya, L. Carta-Abelmann, and P. Scharff, Computer simulation of supported C60 fullerenes fragmentation by particle beam, Carbon, 42, Nos. 5–6, 987–990 (2004).

    Article  Google Scholar 

  33. W. A. McKinley, Jr. and H. Feshbach, The Coulomb scattering of relativistic electrons by nuclei, Phys. Rev., 74, No. 12, 1759–1763 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Gerasimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 2, pp. 369–375, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, G.Y. Radiation stability of carbon nanostructures. J Eng Phys Thermophy 83, 393–400 (2010). https://doi.org/10.1007/s10891-010-0356-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0356-9

Keywords

Navigation