Skip to main content
Log in

A photoacoustic and ultrasonic study on jatropha oil

  • Miscellaneous
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Using the photoacoustic technique, the thermal diffusivity of a dimethoxymethane + jatropha liquid mixture and pure jatropha oil is measured at room temperature. The result is correlated with the result of ultrasonic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Roger and J. O. Jaiduk, A rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels, J. Am. Oil Chem. Soc., 62, 1563–1564 (1985).

    Article  Google Scholar 

  2. T. W. Ryan, L. G. Dodge, and T. J. Callahan, The effects of vegetable oil properties on injection and combustion in two different diesel engines, J. Am. Oil Chem. Soc., 61, 1610–1619 (1984).

    Article  Google Scholar 

  3. M. Ziejewski and K. R. Kaufman, Laboratory endurance test of sunflower oil blend in a diesel engine, J. Am. Oil Chem. Soc., 60, 1567–1573 (1983).

    Article  Google Scholar 

  4. W. E. Kloptenstem, Effect of molecular weights of fatty acid esters on cetane numbers of diesel fuels, J. Am. Oil Chem. Soc., 65, 1029–1031 (1988).

    Google Scholar 

  5. H. Masjuki Salit, Biofuel as diesel fuel alternative: an overview, J. Energy Heat Mass Transfer, 5, 293–304 (1993).

    Google Scholar 

  6. P. Srinivasa Rao and V. K. Gopalakrishnan, Vegetable oils and their methyl esters as fuels for diesel engines, Ind. J. Technol., 29, 292–297 (1991).

    Google Scholar 

  7. K. Pramanik, Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine, Renew. Energy, 2, 239–248 (2003).

    Article  Google Scholar 

  8. F. K. Forson, E. K. Oduro, and E. Hammond Donkoh, Performance of jatropha oil blends in a diesel engine, Renew. Energy, 29, 1135–1145 (2004).

    Article  Google Scholar 

  9. J. Pan, J. T. Wu, Z. G. Liu, and X. G Jin, Measurement of the thermal conductivity of liquid dimethoxymethane from 240 to 362 K, Int. J. Thermophys., 25, 701–708 (2004).

    Article  Google Scholar 

  10. J. A. P. Lima, E. Marin, S. L. Carodoso, O. Delgado-Vasallo, M. G. Da Silva, and M. S. Sthel, Application of novel photoacoustic measurement designs to Chromium (VI) determination in water, Anal. Sci., 17, 530–533 (2001).

    Google Scholar 

  11. Y. Shen, L. Zuhong, S. Spiers, H. A. Mackenzie, Helen S. Ashton, and John Hannigan, Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique, Appl. Opt., 39, 4007–4012 (2000).

    Article  Google Scholar 

  12. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy, Wiley, New York (1980).

    Google Scholar 

  13. A. J. Twarowski and D. S. Kliger, Multiphoton absorption spectra using thermal blooming, Chem. Phys., 20, 259–264 (1977).

    Article  Google Scholar 

  14. C. V. Bindhu, S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry, Opt. Eng., 37, No. 10, 2791–2794 (1998).

    Article  Google Scholar 

  15. R. T. Lagemann, D. R. McMillan, Jr, and W. E. Woolf, Temperature variation of ultrasonic velocity in liquids, J. Chem. Phys., 17, No. 4, 369–373 (1949).

    Article  Google Scholar 

  16. J. D. Pandey, D. Ranjan, and J. Chhabra, Thermoacoustical approach to the intermolecular free length of liquid mixtures, Phys. Chem. Commun., 6, 55–58 (2003).

    Google Scholar 

  17. C. M. Sehgal, Ultrasonic nonlinear parameters and sound speed of alcohol–water mixtures, Ultrasonics, 33, 155–161 (1995).

    Article  Google Scholar 

  18. J. Banchet and J. D. N. Cheeke, Measurement of the acoustic nonlinearity parameter B/A in solvents: Dependence on chain length and sound velocity, J. Acoust. Soc. Am., 108, 2754–2758 (2000).

    Article  Google Scholar 

  19. C. Kittel, Ultrasonic propagation in liquids. II. Theoretical study of the free volume model of the liquid state, J. Chem. Phys., 14, 614–624 (1946).

    Article  Google Scholar 

  20. B. Hartman, Potential energy effects on the sound speed in liquids, J. Acoust. Soc. Am., 65, 1392–1397 (1979).

    Article  Google Scholar 

  21. J. Tong and Y. W. Dong, Expression of acoustic parameters in organic liquids derived from Schaaff’s theory, J. Acoust. Soc. Am., 93, 291–294 (1993).

    Article  Google Scholar 

  22. F. Plantier, J. L. Daridon, and B. Lagourette, Nonlinear parameter (B/A) measurements in methanol, 1-butanol and 1-octanol for different pressures and temperatures, J. Phys. D: Appl. Phys., 35, 1063–1067 (2002).

    Article  Google Scholar 

  23. http://www.hukseflux.com/thermal%20conductivity/thermal.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krishna Bama.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 1, pp. 193–198, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna Bama, G., Ramachandran, K. A photoacoustic and ultrasonic study on jatropha oil. J Eng Phys Thermophy 83, 213–219 (2010). https://doi.org/10.1007/s10891-010-0336-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0336-0

Keywords

Navigation