Skip to main content
Log in

Physical and mathematical modeling of acousto-convective drying of rice

  • Heat Conduction and Heat Exchange in Technological Processes
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The present paper considers calculated and experimental data on acousto-convective drying of unhusked rice and analyzes the data on the drying of rise in three drying cells: in two installations of the Institute of Theoretical and Applied Mechanics (ITAM) of the Siberian Branch of the RAS — drying cells of small and medium cross-section — and in the large cross-section installation developed jointly by the Korea Polytechnic University and Doosan Co. LD. on the basis of the acousto-convective technology developed at the ITAM of the Siberian Branch of the RAS. In particular, calculated velocity distributions over the cell cross-section in the installation with a large cross-section are presented. The experiment has shown that the use of the twomode acoustic signal for drying rice does not influence drying results as compared to the one-mode regime. The drying rate of rice placed in the audio-frequency generator chamber differed from the drying rate in the drying cell. The calculation method has been verified by the amplitude-frequency characteristics of the Hartmann generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Luikov, Theory of Drying [in Russian], Énergiya, Moscow (1968).

    Google Scholar 

  2. R. S. Soloff, Sonic drying, J. Acoust. Soc. Am., 36, No. 5, 961–965 (1964).

    Article  Google Scholar 

  3. A. V. Fedorov and V. M. Fomin, Physicomathematical modeling of the phenomenon of acoustoconvective drying, in: Heat and Mass Transfer–MIF-2008: 6th Minsk Int. Forum [in Russian], May 19–23, 2008, Vol. 1, Minsk (2008), pp. 45–46.

  4. C. C. Huxsoll and C. W. Hall, Effects of sonic irradiation on drying rates of wheat and shelled corn, ASAE, 13, 21–24 (1970).

    Google Scholar 

  5. S. H. Muralidhara and D. Ensminger, Acoustic Drying of Green Rice, Drying Technol., 4, No. 1, 137–143 (1986).

    Article  Google Scholar 

  6. R. A. Carlson, D. F. Farkas, and R. M. Curtis, Effect of sonic energy on the air drying of apple and sweet potato cubes, J. Food Sci., 37, 793–794 (1972).

    Article  Google Scholar 

  7. A. Marzec, P. Lewicki, and Z. Ranachowski, Influence of water activity on acoustic emission of flat extruded bread, J. Food Eng., 79, 410–422 (2007).

    Article  Google Scholar 

  8. L. G. Bartolome, J. E. Hoff, and K. R. Purdu, Effect of resonant acoustic vibrations on drying rates of potato cylinders, Food Technol., 23, No. 3, 47–50 (1969).

    Google Scholar 

  9. D. E. Scarborough, R. I. Sujith, and B. T. Zinn, The effect of resonant acoustic oscillations on heat and mass transfer rates in a convection air dryer, Drying Technol., 24, No. 8, 931–939 (2006).

    Article  Google Scholar 

  10. V. N. Glaznev, Yu. G. Korobeinikov, and N. V. Terpugov, Extraction of water from a capillary sample in an acoustic field, Inzh.-Fiz. Zh., 73, No. 4, 686–687 (2000).

    Google Scholar 

  11. Yu. G. Korobeinikov, A. V. Fedorov, and V. M. Fomin, A method for drying materials and a device for its implementation, Patent No. 2270966 (2006).

  12. Yu. G. Korobeinikov, A. P. Petrov, G. A. Trubacheev, and A. V. Fedorov, Investigation of the process of drying a capillary sample subjected to an acoustic-convective effect, Inzh.-Fiz. Zh., 80, No. 2, 166–172 (2007).

    Google Scholar 

  13. J. Hartmann, On a new method for the generation of sound waves, Phys. Rev., 20, 719 (1922).

    Article  Google Scholar 

  14. V. N. Glaznev and Yu. G. Korobeinikov, The Hartmann effect. The existence domain and vibration frequencies, Zh. Prikl. Mekh. Tekh. Fiz., 42, No. 4, 62–67 (2001).

    Google Scholar 

  15. A. V. Fedorov, N. N. Fedorova, I. A. Fedorchenko, Yu. G. Korobeinikov, K. M. Choo, S. B. An, and H. J. Lee, Numerical simulation of acoustic waves in jet flows, in: Book of Abstracts of 5th Int. Conf. on Computational Fluid Dynamics, Seoul (2008).

  16. R. M. G. Boucher, Drying by airborne ultrasonics, Ultrasonics News, 3, 8–16, (1959).

    Google Scholar 

  17. Yu. Ya. Borisov and N. M. Gynkina (L. D. Rozenberg Ed.), Physical Principles of Ultrasonic Technology [in Russian], Nauka, Moscow (1970), pp. 580–640.

  18. V. N. Glaznev, I. V. Koptyug, and Yu. G. Korobeinikov, Physical features of acoustic drying of wood, Inzh.-Fiz. Zh., 72, No. 3, 437–439 (1999).

    Google Scholar 

  19. Yu. G. Korobeinikov, A. P. Petrov, and A. V. Fedorov, Visualization of the process of water extraction from transparent model samples in convective and acoustic drying, Inzh.-Fiz. Zh., 77, No. 2, 31–35 (2004).

    Google Scholar 

  20. Yu. G. Korobeinikov, A. A. Nazarov, and A. V. Fedorov, Energy expenditures in drying wood by acoustic technique, Derevoobrab. Promysh., No. 4, 6–7 (2004).

    Google Scholar 

  21. Yu. A. Gosteev, Yu. G. Korobeinikov, A. V. Fedorov, and V. M. Fomin, Investigation of the warming-up of model samples in acousto-convective drying, Zh. Prikl. Mekh. Tekh. Fiz., 46, No. 5, 116–122 (2005).

    Google Scholar 

  22. Yu. G. Korobeinikov, A. P. Petrov, G. A. Trubacheev, and A. V. Fedorov, Thermal effects in model samples in acousto-convective drying, Inzh.-Fiz. Zh., 79, No. 2, 168–173 (2006).

    Google Scholar 

  23. Yu. G. Korobeinikov, G. A. Trubacheev, A. V. Fedorov, K. M. Chu, D. M. Zheong, and Yu. I. Kim, Experimental investigation of the acousto-convective drying of unhusked Korean rice, Inzh.-Fiz. Zh., 81, No. 4, 652–655 (2008).

    Google Scholar 

  24. Yu. G. Korobeinikov and A. V. Fedorov, On the extraction of water from a capillary sample in an acoustic field, Inzh.-Fiz. Zh., 76, No. 1, 7–10 (2003).

    Google Scholar 

  25. Yu. G. Korobeinikov, A. P. Petrov, G. V. Trubachev, and A. V. Fedorov, Investigation of the process of drying a system of connected capillaries in an acoustic-convective field, Inzh.-Fiz. Zh., 81, No. 6, 1097–1101 (2008).

    Google Scholar 

  26. A. V. Borisov and N. N. Fedorova, Calculation of turbulent detached flows on the basis of the method of higher-order approximation, Teplofiz. Aéromekh., 2, No. 3, 253–269 (1995).

    Google Scholar 

  27. V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Outflow Processes [in Russian], Nauka, Novosibirsk (1984).

    MATH  Google Scholar 

  28. B. G. Semiletenko, B. N. Sobkolov, and V. N. Uskov, Approximate calculation of the amplitude-frequency characteristics of unstable interaction of a supersonic jet with a normally fixed flat obstacle, Izv. SO Akad. Nauk SSSR, 3, No. 13, 34–39 (1975).

    Google Scholar 

  29. V. E. Kuz’mina and S. K. Matveev, On the numerical investigation of unstable interaction of a supersonic jet with a flat obstacle, Zh. Prikl. Mekh. Tekh. Fiz., 20, No. 6, 732–737 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Fedorchenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 83, No. 1, pp. 64–73, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.V., Fedorchenko, I.A., An, S.B. et al. Physical and mathematical modeling of acousto-convective drying of rice. J Eng Phys Thermophy 83, 72–82 (2010). https://doi.org/10.1007/s10891-010-0320-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0320-8

Keywords

Navigation