Skip to main content
Log in

High-frequency magnetic-pulse treatment of water as a method of improving the technological properties of fine concretes

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The influence of the time of treatment of the tap and distilled water used for tempering of plasticized fine concretes by a high-frequency magnetic field on the technological characteristics of these concretes was investigated. The optimum regimes of treatment of the mixing water by this field and the dependence of the properties of the concretes obtained with it on the time of its storage after the treatment were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Kruglitskii, Essays on Physicochemical Mechanics [in Russian], Naukova Dumka, Kiev (1988), p. 79.

    Google Scholar 

  2. I. G. Grankovskii, Structure Formation in Mineral Binding Systems [in Russian], Naukova Dumka, Kiev (1984), p. 58.

    Google Scholar 

  3. V. I. Kasatkina, S. V. Fedosov, and M. V. Akulova, Influence of mechanomagnetic activation of water systems on the properties of concrete, Stroit. Mater., No. 11, 58–59 (2007).

    Google Scholar 

  4. V. A. Pomazkin, Physical activation of water used for tempering of concretes, Stroit. Mater., No. 2 (Supplement), 14–16 (2003).

  5. N. P. Gorlenko, Low-Energy Activation of Cement and Oxidic Binding Systems by Electric and Magnetic Fields, Author’s Abstract of Doctoral Dissertation (in Engineering), Tomsk (2007).

  6. V. A. Pomazkin and A. A. Makeeva, Promising trends in the application of magnetic activation, Vestn. Orenburg Gos. Univ., No. 1, 109–114 (2001).

  7. I. G. Grankovskii, N. N. Kruglitskii, G. A. Pasechnik, et al., Combination of the treatment of tempering water in a magnetic field and the subsequent optimal vibroactivation for improvement of the physicomechanical properties of dispersions of mineral binding substances, in: Problems of the Theory and Practice of Magnetic Treatment of Water and Water Systems [in Russian], Izd. Novocherkassk Politekh. Inst., Novocherkassk (1975), pp. 213–217.

  8. I. G. Grankovskii, N. N. Kruglitskii, and G. A. Pasechnik, Kinetics of structure formation in aqueous cement and cement-sand dispersions exposed to a magnetic field, Dokl. Akad. Nauk USSR, Ser. B, No. 8, 751–754 (1973).

    Google Scholar 

  9. S. A. Koksharov, O. I. Konstantinov, A. V. Nikol’skii, et al., Influence of a magnetic field on the state of solutions of active dyes, Zh. Prikl. Khim., 63, No. 3, 565–571 (1990).

    Google Scholar 

  10. V. N. Bingi and A. V. Savin, Physical problems of the action of weak magnetic fields on biological systems, Usp. Fiz. Nauk, 173, No. 3, 265–300 (2003).

    Article  Google Scholar 

  11. V. V. Azharonok, E. A. Gorodetskaya, E. V. Spiridovich, et al., Influence of plasma-radiowave treatment on the sowing qualities of seeds, Dokl. Nats. Akad. Nauk Belarusi, 51, No. 6, 256–262 (2007).

    Google Scholar 

  12. V. V. Azharonok, I. I. Filatova, I. V. Voshchula, et al., Change in the optical properties of paper under the action of the magnetic component of a high-frequency electromagnetic field, Zh. Prikl. Spektrosk., 74, No. 4, 421–426 (2007).

    Google Scholar 

  13. A. Yu. Persidskaya, I. R. Kuzeev, and V. A. Antipin, On the influence of a pulsed magnetic field on the mechanical properties of polymer fibers, Khim. Fiz., 21, No. 2, 90–98 (2002).

    Google Scholar 

  14. V. E. Gul’, O. A. Khanchich, and N. A. Savchenko, Action of a homogeneous magnetic field on a thermotropic liquid-crystal copolymer of hydroxybenzoic acid and ethyleneterephthalate, Mekh. Kompoz. Mater. Konstr., 1, No. 2, 124–128 (1995).

    Google Scholar 

  15. V. M. Schastlivtsev, L. N. Romashev, I. L. Yakovleva, et al., Electronic-microscope investigation of the structure of martensite crystals nucleated under the action of a pulsed magnetic field, Fiz. Metall. Metalloved., 51, No. 4, 773–782 (1981).

    Google Scholar 

  16. G. N. Zdor, A. G. Anisovich, and A. G. Yaskovich, Application of a pulsed magnetic field for improvement of the mechanical properties of nonferrous metal alloys, Probl. Mashinostr. Nadezhn. Mashin, No. 5, 65–70 (2004).

  17. B. V. Malygin, Magnetic Strengthening of Instruments and Machine Components [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  18. D. B. Montgomeri, Generation of High Magnetic Fields with the Aid of Solenoids [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  19. A. G. Gvozdev, I. P. Borodin, L. I. Gvozdeva, et al., Investigation of the influence of processing in a pulsed magnetic field on the properties of 4X5MF1S steel, in: Proc. 5th Int. Sci. Conf. "Strength and Destruction of Materials and Constructions" [in Russian], Vol. 1, Orenburg (2008), pp. 370–373.

  20. V. V. Azharonok, G. N. Zdor, A. G. Anisovich, et al., Transformation of the structure and properties of berillium bronze under the action of a high-frequency magnetic field, Izv. Ross. Akad. Nauk, Metally, No. 4, 100–105 (2003).

    Google Scholar 

  21. V. M. Maslovskii, On the mechanism of the influence of a weak magnetic field on the structure of condensed media, in: Proc. 4th Sci.-Techn. Seminar "Processing by a Pulse Magnetic Field" [in Russian], Botevgrad (1989), p. 5.

  22. A. A. Britova, I. V. Adamko, and V. L. Bachurina, Activation of water by laser radiation, magnetic field, and by their combinaiton, Vestn. Novgorod Gos. Univ., No. 7, 10–15 (1998).

    Google Scholar 

  23. V. R. Falikman, A. Ya. Vainer, N. F. Bashlykov, A new generation of superplasticizers//Beton Zhelezobeton, No. 59, 5–7 (2000).

  24. N. N. Kruglitskii, G. G. Gorovenko, P. P. Malyushevskii, Physicochemical Mechanics of Disperse Systems in Strong Pulsed Fields [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  25. I. G. Grankovskii and N. N. Kruglitskii, On the kinetics of solidification of mineral binding substances, Dokl. Akad. Nauk SSSR, 194, No. 1, 147–148 (1970).

    Google Scholar 

  26. L. N. Braginskii, V. I. Begachev, and V. M. Barabash, Mixing in Liquid Media [in Russian], Khimiya, Leningrad (1984).

    Google Scholar 

  27. S. N. Gabuda, Bound Water: Facts and Hypotheses [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  28. R. Moro, R. Rabinovich, Ch. Xia, and V. Kresin, Electric dipole moments of water clusters from a beam deflection measurement, Phys. Rev. Lett., 97, 123401(1)–123401(4) (2006).

    Article  Google Scholar 

  29. V. P. Voloshin, E. A. Zheligovskaya, G. G. Malenkov, et al., Structure of the nets of hydrogen bonds and the dynamics of water molecules in condensed water systems, Zh. Ross. Khim. Obshch. im. D. I. Mendeleeva, 45, No. 3, 31–37 (2001).

    Google Scholar 

  30. S. V. Drozdov and A. A. Vostrikov, Characteristic features of the structure and energy of small clusters of water, Pis’ma Zh. Tekh. Fiz., 26, No. 9, 81–86 (2000).

    Google Scholar 

  31. A. V. Shabatina and A. V. Nemukhin, Structure and vibrational spectra of H2S (H2O) n clusters, Vestn. Mosk. Gos. Univ., Ser. 2, Khim., 40, No. 3, 147–149 (1999).

    Google Scholar 

  32. A. V. Syroezhkin, A. N. Smirnov, V. V. Goncharuk, et al., Water as a heterogeneous structure, http: zhurnal. ape.relarn.ru/articles/2006/088.pdf

  33. P. P. Loshitskii, Mechanisms of the effect of electromagnetic low-intensity waves on water and aqueous solutions, in: Proc. 22nd Int. Sci.-Pract. Conf. "Problems of Electronics" [in Russian], Kiev (2002), pp. 45–48.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Azharonok.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 6, pp. 1086–1092, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azharonok, V.V., Belous, N.K., Rodtsevich, S.P. et al. High-frequency magnetic-pulse treatment of water as a method of improving the technological properties of fine concretes. J Eng Phys Thermophy 82, 1102–1109 (2009). https://doi.org/10.1007/s10891-010-0311-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0311-9

Keywords

Navigation