Skip to main content
Log in

Influence of the thickness of a wall and of its thermophysical characteristics on the critical heat flux in boiling

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The experimental data published by various authors who studied the burnout heat transfer in boiling have been analyzed. It is shown that the critical heat flux depends substantially on the physical properties of both the boiling liquid and cooled wall and its geometric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Sulatski, O. D. Cherny, V. K. Efimov, and V. S. Granovski, Boiling crisis at the outer surface of VVER vessel, in: Proc. Int. Symp. on the Physics of Heat Transfer in Boiling and Condensation and 11th Int. School-Seminar of Young Scientists and Specialists, 21–24 May 1997, Printing House "Shanse," Moscow (1997), pp. 263–268.

  2. V. I. Deev, K. V. Kutsenko, A. A. Lavrukhin, and V. S. Kharitonov, Nonstationary boiling crisis of liquids, in: 5th Minsk Int. Forum "Heat and Mass Trasfer–MIF-2004" [in Russian], Vol. 2, Minsk (2004), pp. 36–37.

  3. E. O. Adamov and Yu. N. Kuznetsov, Nuclear power: overall strategy and contribution to district heating, Proc. Baltic Heat Transfer Conf., Vol. 1, 19–21 September 2007, St. Petersburg (2007), pp. 10–17.

  4. A. Bergles, Enhancement of boiling heat transfer, Proc. Baltic Heat Transfer Conf., Vol. 1, St. Petersburg (2007), pp. 73–95.

  5. V. A. Grigor’ev, Yu. M. Pavlov, and E. V. Ametistov, Boiling of Cryogenic Liquids [in Russian], Énergiya, Moscow (1977).

    Google Scholar 

  6. O. Dwyer, Heat Transfer in Boiling of Liquid Metals [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  7. H. J. Van Ouverkerk, Burnout in pool boiling. The stability of boiling mechanisms, Int. J. Heat Mass Transfer, 15, 25–34 (1972).

    Article  Google Scholar 

  8. K. R. Efferson, Heat transfer from cylindrical surfaces to liquid helium 1, J. Appl. Phys., 40, No. 5, 1995–2000 (1969).

    Article  Google Scholar 

  9. S. Ishigai and T. Kuno, Experimental study of transition boiling on a vertical wall open vessel, Bull. JSME, 9, No. 5, 361–368 (1966).

    Google Scholar 

  10. S. S. Kutateladze, Hydrodynamic model of burnout heat transfer in a boiling liquid at free convection, Zh. Tekh. Fiz., 20, No. 11, 1389–1392 (1950).

    Google Scholar 

  11. S. S. Kutateladze, Hydrodynamic theory of the change in the regime of liquid boiling free convection, Izv. Akad. Nauk SSSR, No. 4, 529–536 (1951).

    Google Scholar 

  12. N. Zuber, Hydrodynamic Aspects of Boiling Heat Transfer, AEC Report, AECU-4439, Los Angeles (1959).

  13. D. A. Labuntsov, Generalized dependences for critical heat loads for the boiling of liquids under the conditions of free motion, Teploenergetika, No. 7, 76–80 (1960).

    Google Scholar 

  14. V. V. Yagov, Mechanism of pool boiling crisis, Teploenergetika, No. 3, 2–10 (2003).

  15. L. Bernath, A theory of local-boiling burnout and its application to existing data, Chem. Eng. Progr. Symp. Ser., No. 56 (30), 95–116 (1960).

  16. C. R. Class, J. R. De Hean, M. Piccone, and R. B. Cost, Boiling heat transfer to liquid hydrogen from flat surfaces, Adv. Cryogenic Eng., 5, 254–261 (1960).

    Google Scholar 

  17. P. J. Berenson, Experiments on pool boiling heat transfer, Int. J. Heat Mass Transfer, 5, 985–999 (1962).

    Article  Google Scholar 

  18. G. I. Bobrovich, I. I. Gogonin, S. S. Kutateladze, and V. N. Moskvicheva, Critical heat fluxes in boiling of binary mixtures, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 108–111 (1962).

  19. V. S. Golovin, B. A. Kol’chugin, and D. A. Labuntsov, Experimental investigation of heat transfer rate and critical heat loads in boiling of water under the conditions of free motion, Inzh.-Fiz. Zh., 6, No. 2, 3–7 (1963).

    Google Scholar 

  20. J. C. Hoehne and D. A. Huber, Pool boiling of benzene, biphenyl and benzene-diphenyl mixtures under pressure, Trans. ASME, Ser. C, 85, No. 3, 31–38 (1963).

    Google Scholar 

  21. D. N. Lyon, P. G. Kosky, and B. N. Harman, Nucleate boiling heat transfer coefficients and peak nucleate boiling fluxes for pure liquid nitrogen and oxygen on horizontal platinum surfaces from below 0.5 atmosphere to the critical pressures, Adv. Cryogenic Eng., 9, 77–87 (1964).

    Google Scholar 

  22. G. I. Bobrovich, I. I. Gogonin, and S. S. Kutateladze, Influence of the heating surface size on the critical heat flux in pool boiling of liquids, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 137–138 (1964).

  23. M. Carne, Some effects of test section geometry in saturated pool boiling on the critical heat flux for some organic liquids and liquid mixtures, Chem. Eng. Prog. Symp. Ser. 61, No. 59, 281–289 (1965).

    Google Scholar 

  24. G. V. Ratiani and D. I. Avaliani, Heat transfer and critical heat loads in boiling of freons, Kholod. Tekhn., No. 3, 23–27 (1965).

    Google Scholar 

  25. D. N. Lyon, Boiling heat transfer and peak nucleate boiling fluxes in saturated liquid helium between the λ- point and critical temperatures, Adv. Cryogenic Eng., 10, 371–379 (1965).

    Google Scholar 

  26. R. F. Gaertner, Photographic study of nucleate pool boiling on a horizontal surface, Trans. ASME, Ser. C, No. 1, 20–35 (1965).

    Google Scholar 

  27. V. G. Morozov, Investigation of the termination of bubble boiling on an immersed surface, in: Transactions of the Central Boiler and Turbine Institute "Manufacturing of Boilers and Turbines," TsKTI, Issue 58, Leningrad (1965), pp. 64–77.

  28. N. N. Mamontova, Investigation of Critical Heat Fluxes in Boiling of Liquids under Conditions of Free Convection and Pressures below Atmospheric, Candidate’s Dissertation (in Engineering), Novosibirsk (1966).

  29. F. Tachibana, M. Akyama, and H. Kawamura, Non-hydrodynamic aspects of pool boiling burnout, J. Nucl. Sci. Technol., 4, No. 3, 121–130 (1967).

    Article  Google Scholar 

  30. S. S. Kutateladze, N. V. Valunina, and I. I. Gogonin, Relationship between critical heat flux and heater diameter in the boiling of a saturated liquid in free-convection conditions, Inzh.-Fiz. Zh., 12, No. 5, 569–575 (1967).

    Google Scholar 

  31. I. I. Gogonin, Heat transfer and critical heat loads in boiling of Freon-21 under free-convection conditions, Kholod. Tekhn., No. 3, 24–28 (1970).

    Google Scholar 

  32. J. H. Leanhard, V. K. Dhir, and D. M. Riherd, Peak pool boiling heat flux mesurements on finite horizontal flat plates, Trans. ASME, Ser. C, No. 4, 49–56 (1973).

    Google Scholar 

  33. Yu. A. Kirichenko, S. M. Kozlov, and N. M. Levchenko, Experimental investigation of the boiling crisis of hydrogen and nitrogen, in: Problems of the Hydrodynamics and Heat Transfer in Cryogenic Systems, Issue 4, FTINT AN UkrSSR, Kiev (1974), pp. 62–66.

  34. A. S. Dudkevich and F. D. Akhmedov, Experimental investigation of the influence of the thermophysical properties of the heating surface in boiling of nitrogen at elevated pressures, in: Transactions of Moscow Power Institute "Heat and Mass Transfer Processes and Apparatuses" [in Russian], Issue 198, ME 2I, Moscow (1974), pp. 41–47.

  35. A. V. Klimenko, Experimental and Theoretical Investigation of the Influence of Certain Factors on Heat Transfer in Boiling of Cryogenic Liquids, Author’s Abstract of Candidate’s Dissertation (in Engineering), Moscow (1975).

  36. V. K. Andreev, V. I. Deev, and V. I. Petrovichev, Influence of the heating surface orientation and pressure on the critical heat flux in pool boiling of helium, Deposited at VINITI 23.01.76, No. 858, Moscow (1976).

  37. I. I. Gogonin and S. S. Kutateladze, Critical heat flux as a function of heater size for a liquid boiling in a large enclosure, Inzh.-Fiz. Zh., 33, No. 5, 802–806 (1977).

    Google Scholar 

  38. W. Nusselt, Die Oberflächen Kondensationubes Wasserdanpfes, Z. der VDI, 1, No. 27, 541 (1916).

    Google Scholar 

  39. W. Nusselt, Die Oberflächen Kondensationubes Wasserdampfes, Z. der VDI, 2, No. 28, 569 (1916).

    Google Scholar 

  40. V. A. Grigor’ev, V. V. Klimenko, Yu. M. Pavlov, and E. V. Ametistov, Toward the theory of pool bubble boiling crisis, Teploenergetika, No. 2, 7–9 (1978).

  41. I. I. Gogonin, Dependence of boiling heat transfer on the properties and geometric parameters of a heat-releasing wall, Teplofiz. Vys. Temp., 44, No. 6, 918–925 (2006).

    Google Scholar 

  42. N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  43. B. N. Maksimov, V. G. Barabanov, I. P. Serushkin, et al., Industrial Fluoro-Organic Compounds: Handbook [in Russian], Khimiya, Leningrad (1990).

    Google Scholar 

  44. B. I. Verkin, Yu. A. Kirichenko, and K. V. Rusanov, Heat Transfer in Boiling of Cryogenic Liquids [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  45. O. G. Martynenko, A. A. Mikhalevich, and V. K. Shikov (Eds.), Handbook on Heat Exchangers [Russian translation], Vol. 2, Énergoatomizdat, Moscow (1987).

    Google Scholar 

  46. L. A. Novitskii and I. G. Kozhevnikov, Thermophysical Properties of Materials at Low Temperatures: Handbook [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  47. A. S. Zubchenko (Ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2003).

    Google Scholar 

  48. M. P. Malkov (Ed.), Handbook on the Physicotechnical Foundations of Cryogenics [in Russian], Énergiya, Moscow (1973).

    Google Scholar 

  49. O. V. Mazurin, M. V. Strel’tsina, and T. P. Shvaiko-Shvaikovskaya, The Properties of Glasses and Glass-Forming Melts [in Russian], Vol. 3, Pt. 1, Nauka, Leningrad (1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gogonin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 6, pp. 1152–1159, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogonin, I.I. Influence of the thickness of a wall and of its thermophysical characteristics on the critical heat flux in boiling. J Eng Phys Thermophy 82, 1175–1183 (2009). https://doi.org/10.1007/s10891-010-0301-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0301-y

Keywords

Navigation