Skip to main content
Log in

Experimental investigation of evaporative pulse-spray impingement cooling

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper describes an experimental facility and methods for measuring the aerodynamic and thermal parameters in the interaction between a pulse spray and a vertical surface. The spray-forming unit contains 16 atomizers with opening time regulation (from 1 to 10 msec) and a frequency of up to 50 Hz. The experiments were performed in the regime of evaporation of the liquid precipitated on the surface in the form of separate drops, rivulets, and a continuously flowing sheet. It has been shown that depending on the time parameters of the pulse spray, the integral heat transfer can effectively be controlled over a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Whalley, Boiling, Condensation and Gas-Liquid Flow, Oxford University Press, New York (1987).

    Google Scholar 

  2. L. H. Watchers, and N. A. Westerling, The heat transfer from a hot wall to impinging water drops in the spheroidal state, Chem. Eng. Sci., 21, 1047–1056 (1996).

    Google Scholar 

  3. K. Makino and I. Michiyoshi, The behavior of a water droplet on heated surfaces, Int. J. Heat Mass Transfer, 27, 781–791 (1984).

    Article  Google Scholar 

  4. P. J. Halvorson, R. J. Carson, S. M. Jeter, and S. I. Abdel-Khalik, Critical heat-flux limit for a heat transfer surface impacted by a stream of liquid droplets, J. Heat Transfer, 116, 679–685 (1994).

    Article  Google Scholar 

  5. J. D. Bernardin and I. Mudawar, Film boiling heat transfer of droplet streams and sprays, Int. J. Heat Mass Transfer, 40, 2579–2593 (1997).

    Article  Google Scholar 

  6. W. P. Klinzing, J. C. Rozzi, and I. Mudawar, Film and transition boiling correlations for quenching of hot surfaces with water sprays, J. Heat Treatment, 9, 91–103 (1992).

    Article  Google Scholar 

  7. S. C. Yao and K. J. Choi, Heat transfer of vertically impacting sprays, Int. J. Multiphase Flow, 13, No. 5, 639–648 (1987).

    Article  Google Scholar 

  8. K. J. Choi and S. C. Yao, Mechanisms of film boiling heat transfer of normally impacting sprays, Int. J. Heat Mass Transfer, 30, No. 2, 311–318 (1987).

    Article  Google Scholar 

  9. J. D. Yang, L. C. Chow, and M. R. Pais, Nucleate boiling heat transfer in spray cooling, J. Heat Transfer, 118, 255–258 (1996).

    Article  Google Scholar 

  10. K. Oliphant, B. W. Webb, and M. Q. McQuay, An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime, Exp. Thermal Fluid Sci., 18, 1–10 (1998).

    Article  Google Scholar 

  11. M. Pasandideh-Fard, S. D. Aziz, S. Chandra, and J. Mostaghimi, Cooling effectiveness of a water drop impinging on a hot surface, Int. J. Heat Fluid Flow, 22, 201–210 (2001).

    Article  Google Scholar 

  12. V. P. Isachenko and V. I. Kushnyrev, Jet Cooling [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  13. V. P. Isachenko and I. K. Sidorova, Experimental investigation of the cooling of a plane vertical surface by a dispersed liquid jet, Teploénergetika, No. 3, 30–33 (1982).

  14. M. R. Pais, L. C. Chow, and E. T. Mahefkey, Multiple jet impigement cooling, J. Thermophys. Heat Transfer, 7, No. 3, 435–440 (1993).

    Article  Google Scholar 

  15. L. Tianshu and J. P. Sullivan, Heat transfer and flow structures in an excited circular impinging jet, Int. J. Heat Mass Transfer, 39, No. 17, 3695–3706 (1996).

    Article  Google Scholar 

  16. S. Alekseenko, A. Bilsky, O. Heinz, B. Ilyushin, and D. Markovich, Near–wall characteristics of impinging turbulent jet, in: Proc. 4th Int. Symp. on Turbulence, Heat and Mass Transfer, 12–17 October 2003, Antalya, Turkey (2003), pp. 235–241.

    Google Scholar 

  17. A. A. Pavlova, K. Otani, and M. Amitay, Active control of sprays using a single synthetic jet actuator, Int. J. Heat Fluid Flow, 29, 131–148 (2008).

    Article  Google Scholar 

  18. A. F. Serov, A. D. Nazarov, V. I. Terekhov, and K. A. Sharov, Application of a capacitive sensor in investigating the heat and mass transfer in gas-droplet and near-wall jets, in: Proc. 4th Russ. Nat. Conf. on Heat Transfer [in Russian], Moscow (2006), pp. 205–208.

  19. V. I. Terekhov, A. F. Serov, A. D. Nazarov, and K. A. Sharov, Experimental investigation of the precipitation of liquid droplets on the walls of a vertical cylindrical channel from near-wall gas-droplet jets, Teplofiz. Vys. Temp., 41, No. 3, 1–8 (2003).

    Google Scholar 

  20. W. Jia and H.-H. Qiu, Experimental investigation of droplet dynamics and heat transfer in spray cooling, Exp. Thermal Fluid Sci., 27, 829–838 (2003).

    Article  Google Scholar 

  21. I. Mudawar and T. A. Deiters, A universal approach to predicting temperature response of metallic parts to spray quenching, Int. J. Heat Mass Transfer, 37, 347–362 (1994).

    Article  Google Scholar 

  22. C. F. Ma and Y. Q. Tian, Experimental investigation on two-phase two-component jet impingement heat transfer from simulated microelectronic heat sources, Int. Commun. Heat Mass Transfer, 17, 399–408 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Terekhov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 6, pp. 1160–1166, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, A.D., Serov, A.F., Terekhov, V.I. et al. Experimental investigation of evaporative pulse-spray impingement cooling. J Eng Phys Thermophy 82, 1184–1190 (2009). https://doi.org/10.1007/s10891-010-0298-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-010-0298-2

Keywords

Navigation