Skip to main content
Log in

Numerical analysis of the influence of the physical viscosity on the vortex heat transfer in laminar and turbulent flows around a heated plate with a shallow spherical hole

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The influence of the Reynolds number on the patterns of separation laminar and turbulent flows around a plane plate with a shallow hole as well as on the thermal-hydraulic characteristics of this plate was analyzed on the basis of the solution of the differential mass- and energy-conservation equations, the Navier–Stokes equations, and the Reynolds equations closed with the use of the shear-stress transfer model by the factorized finite-volume method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Turnow, N. Kornev, S. Isaev, and E. Hassel, Vortex-jet mechanism of heat transfer enhancement in a channel with spherical and oval dimples, Proc. Int. Conf. on Jets, Wakes and Separated Flows, Berlin (2008).

  2. S. A. Isaev, A. I. Leont’ev, and A. E. Usachov, Numerical study of the eddy mechanism of enhancement of heat and mass transfer near a surface with a cavity, Inzh.-Fiz. Zh., 71, No. 3, 484–490 (1998).

    Google Scholar 

  3. S. A. Isaev, A. I. Leont’ev, D. P. Frolov, and V. B. Kharchenko, Identification of self-organizing vortex structures in numerical modeling of a three-dimensional laminar viscous incompressible fluid flow around a hole on a plane, Pis’ma Zh. Tekh. Fiz., 24, Issue 6, 6–11 (1998).

    Google Scholar 

  4. S. A. Isaev, A. I. Leont’ev, A. E. Usachov, and D. P. Frolov, Identification of self-organizing jet-vortex structures in numerical modeling of a laminar flow and heat transfer in the vicinity of an isolated asymmetric hole, Izv. Ross. Akad. Nauk, Énergetika, No. 2, 126–136 (1999).

    Google Scholar 

  5. S. A. Isaev, A. I. Leont’ev, P. A. Baranov, Kh. T. Metov, and A. E. Usachov, Numerical analysis of the effect of viscosity on the vortex dynamics in laminar separated flow past a dimple on a plane with allowance for its asymmetry, Inzh.-Fiz. Zh., 74, No. 2, 62–67 (2001).

    Google Scholar 

  6. S. A. Isaev, I. A. Pyshnyi, A. E. Usachov, and V. B. Kharchenko, Verification of the multiblock computational technology in calculating laminar and turbulent flow around a spherical hole on a channel wall, Inzh.-Fiz. Zh., 75, No. 5, 122–124 (2002).

    Google Scholar 

  7. S. A. Isaev, V. B. Kharchenko, and Ya. P. Chudnovskii, Calculation of a three-dimensional flow of a viscous incompressible liquid in the neighborhood of a shallow well, Inzh.-Fiz. Zh., 67, Nos. 5–6, 373–378 (1994).

    Google Scholar 

  8. S. A. Isaev, A. I. Leont’ev, and A. E. Usachov, Methodological aspects of numerical simulation of the dynamics of the vortex structures and heat transfer in viscous turbulent flows, Izv. Ross. Akad. Nauk, Énergetika, No. 4, 140–148 (1996).

    Google Scholar 

  9. S. A. Isaev, A. I. Leont’ev, and P. A. Baranov, Identification of self-organizing tornado-like structures in numerical simulation of a turbulent viscous incompressible fluid flow around a hole on a plane, Pis’ma Zh. Tekh. Fiz., 26, Issue 1, 30–36 (2000).

    Google Scholar 

  10. S. A. Isaev, A. I. Leont’ev, P. A. Baranov, and A. E. Usachov, Bifurcation of a vortex turbulent flow and intensification of heat transfer in a hole, Dokl. Ross. Akad. Nauk, 373, No. 5, 615–617 (2000).

    Google Scholar 

  11. S. A. Isaev, A. I. Leont’ev, Kh. T. Metov, and V. B. Kharchenko, Modeling of the influence of viscosity on the tornado heat exchange in turbulent flow around a small hole on the plane, Inzh.-Fiz. Zh., 75, No. 4, 98–104 (2002).

    Google Scholar 

  12. P. A. Baranov, S. A. Isaev, A. I. Leont’ev, A. V. Mityakov, V. Yu. Mityakov, and S. Z. Sapozhnikov, Physical and numerical simulation of the vortex heat transfer in a turbulent flow around a spherical hole on a plane, Teplofiz. Aéromekh., 9, No. 4, 521–532 (2002).

    Google Scholar 

  13. S. A. Isaev, A. I. Leont’ev, N. A. Kudryavtsev, and I. A. Pyshnyi, On the influence of the rearrangement of a vortex structure with increase in the depth of a spherical hole on the wall of a narrow plane-parallel channel on the jumpwise change in the heat transfer, Izv. Ross. Akad. Nauk, Teplofiz. Vys. Temp., 41, No. 2, 268–272 (2003).

    Google Scholar 

  14. S. A. Isaev and A. I. Leont’ev, Numerical simulation of the vortex intensification of heat transfer in turbulent flow around a spherical hole on the wall of a narrow channel, Izv. Ross. Akad. Nauk, Teplofiz. Vys. Temp., 41, No. 5, 755–770 (2003).

    Google Scholar 

  15. S. A. Isaev, A. I. Leont’ev, P. A. Baranov, and I. A. Pyshnyi, Numerical analysis of the influence of the depth of a spherical hole on a plane wall on the turbulent heat exchange, Inzh.-Fiz. Zh., 76, No. 1, 52–59 (2003).

    Google Scholar 

  16. S. A. Isaev, A. I. Leont’ev, A. V. Mityakov, and I. A. Pyshnyi, Intensification of tornado turbulent heat exchange in axisymmetric holes on a plane wall, Inzh.-Fiz. Zh., 76, No. 2, 31–34 (2003).

    Google Scholar 

  17. S. A. Isaev, A. I. Leont’ev, G. I. Kiknadze, N. A. Kudryavtsev, and I. A. Gachechiladze, Comparative analysis of the vortex heat exchange in turbulent flow around a spherical hole and a two-dimensional trench on a plane wall, Inzh.-Fiz. Zh., 78, No. 4, 117–128 (2005).

    Google Scholar 

  18. N. Kornev, E. Hassel, H. Herwig, S. Isaev, P. Stephan, and V. Zhdanov, Enhancement of heat transfer from dimpled surfaces by the use of vortex induction, Eng. Res. (Forschung im Ingenieurwesen), 69, No. 2, 90–100 (2005).

    Article  Google Scholar 

  19. S. A. Isaev, A. I. Leont’ev, and P. A. Baranov, Simulation tornado-like enhancement of heat transfer for lowvelocity motion of air in a rectangular channel with cavities. Pt. 1: Selection and justification of calculation methods, Thermal Eng., 54, No. 3, 193–199 (2007).

    Article  Google Scholar 

  20. S. A. Isaev, A. I. Leont’ev, and P. A. Baranov, Simulation tornado-like enhancement of heat transfer for lowvelocity motion of air in a rectangular channel with cavities. Pt. 2: Results of parametric studies, Thermal Eng., 54, No. 8, 655–663 (2007).

    Article  Google Scholar 

  21. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leont’ev, Numerical Simulation of the Vortical Intensification of the Heat Transfer in Stacks of Tubes [in Russian], Sudostroenie, St. Petersburg (2005).

    Google Scholar 

  22. V. B. Kharchenko, Numerical Simulation of Separation Flows with Vortex and Jet Generators on the Basis of Multiblock Computational Technologies [in Russian], Author’s Thesis of Doctoral Dissertation (in Engineering), St. Petersburg (2006).

  23. A. A. Khalatov, Heat Transfer and Hydrodynamics Near Surface Depressions (Holes) [in Russian], ITTF, Kiev (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Isaev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 5, pp. 847–857, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, S.A., Sapozhnikov, S.Z., Mityakov, V.Y. et al. Numerical analysis of the influence of the physical viscosity on the vortex heat transfer in laminar and turbulent flows around a heated plate with a shallow spherical hole. J Eng Phys Thermophy 82, 847–859 (2009). https://doi.org/10.1007/s10891-009-0262-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0262-1

Keywords

Navigation