Skip to main content
Log in

Shadow method for measuring the average electron density in an ionized gas flow induced by a high-frequency barrier discharge

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The electron density distribution in an ionized gas flow induced by a high-frequency barrier discharge has been investigated by an optical method. It has been shown that ion acceleration occurs mainly near the minima of the electron density, and the extremes in the temperature distribution are in antiphase with the corresponding extremes of the electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Roth, D. M. Sherman, and S. P. Wilkinson, Electrohydrodynamic flow control with a glow-discharge surface plasma, AIAA J., 38, No. 7, pp. 1166–1172 (2000).

    Article  Google Scholar 

  2. T. C. Corke and E. Matlis, Phased plasma arrays for unsteady flow control, AIAA Paper 2000-2323 (2000).

  3. G. Artana, J. Adamo, L. Le′ger, E. Moreau, and G. Touchard, Flow control with electrohydrodynamic actuators, IAA Paper 2001-0351 (2001).

  4. S. Leonov, V. Bityurin, and Y. Kolesnichenko, Dynamic of a single-electrode of plasma filament in supersonic airflow, AIAA Paper 2001-0493 (2001).

  5. M. L. Post and T. C. Corke, Separation control on high angle of attack airfoil using plasma actuators, AIAA Paper 2003-1024 (2003).

  6. P. K. Tretyakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tischenko, and V. I. Yakovlev, Control of supersonic flow around bodies by means of high-power recurrent optical breakdown, Doklady, 41, No. 11, 566 (1996).

    Google Scholar 

  7. M. A. S. Minucci, R. M. Bracken, L. N. Myrabo, H. T. Nagamatsu, and K. J. Shanahan, Experimental investigation of an electric arc simulated ’air spike’ in hypersonic flow, AIAA Paper 2000-0715 (2000).

  8. S. V. Bobashev, E. A. Dyakonova, A. V. Erofeev, T. A. Lapushikina, V. G. Maslennikov, S. A. Poniaev, A. A. Sacharov, and R. V. Vasil’eva, Shock-tube facility for MGD supersonic flow control, AIAA Paper 2000-2647 (2000).

  9. R. G. Adelgren, G. S. Elliott, and D. Knight, Energy deposition in supersonic flows, AIAA Paper 2001-0885 (2001).

  10. R. Yano, S. M. Aithal, V. V. Subramaniam, V. Contini, P. Palm, S. Merriman, I. Adamovich, W. Lempert, and J. W. Rich, Experimental characterization of shock dispersions in weakly ionized nonequilibrium plasmas, AIAA Paper 1999-3671 (1999).

  11. I. V. Adamovich, Control of electron recombination rate and electron density in optically pumped nonequilibrium plasmas, J. Phys. D: Appl. Phys., 34, 319–325 (2001).

    Article  Google Scholar 

  12. S. Merriman, A. Christian, R. Meyer, B. Kowalczyk, P. Palm, and I. V. Adamovich, Studies of conical shock modification by nonequilibrium rf discharge plasma, AIAA Paper 2001-0347 (2001).

  13. S. Leonov, V. Bityurin, K. Savelkin, and D. Yarantsev, Effect of electrical discharge on separation processes and shocks position in supersonic airflow, AIAA Paper 2002-0355 (2002).

  14. T. R. Troutt and D. K. McLaughlin, Experiments on the flow and acoustic properties of a moderate Reynolds number supersonic jet, J. Fluid Mech., 116, 123–156 (1982).

    Article  Google Scholar 

  15. S. Martens, K. W. Kinzie, and D. K. McLaughlin, Structure of coherent instabilities in a supersonic shear layer, AIAA J., 34, No. 8, 1555 (1996).

    Article  Google Scholar 

  16. R. G. Adelgren, G. S. Elliott, and J. B. Crawford, Axisymmetric jet shear layer excitation induced by electric arc discharge and focused laser energy deposition, AIAA Paper 2002-0729 (2002).

  17. V. Stepaniuk, V. Sheverev, M. V. Ötügen, and C. Tarau, Sound attenuation by glow discharge plasma, AIAA Paper 2003-0371 (2003).

  18. S. P. Kuo and D. Bivolaru, Plasma effect on shock waves in a supersonic flow, Phys. Plasmas, 8, No. 7, 3258–3264 (2001).

    Google Scholar 

  19. R. Akhavan, W. Jung, and N. Mangiavacchi, Control of wall turbulence by high frequency spanwise oscillations, AIAA Paper 93-3282 (1993).

  20. M. U. Clauser and R. X. Meyer, Magnetohydrodynamic Control Systems, US Patent 3,162,398, Issued Dec. 22, 1964.

  21. G. A. Hill, Ionized Boundary Layer Fluid Pumping System, US Patent 3,095,163, Issued June 25, 1963.

  22. A. Tsinober (A. R. Seabass Ed.), MHD flow drag reduction, viscous drag reduction in boundary layers, AIAA Progress in Astronautics and Aeronautics, 123, ISBN 0-930403-66-5, 327–349 (1998).

  23. D. M, Nosenchuck, G. L. Brown, H. C. Culver, T. I. Eng, and I. S. Huang, Spatial and temporal characteristics of boundary layers controlled with the Lorentz force, in: Proc. 12th Australasian Fluid Mechanics Conf., 10–15 December 1995, Sydney, NSW, Australia (1995), Vol. 1, pp. 93–96.

  24. L. D. Kral and J. F. Donovan, Numerical simulation of turbulence control using electromagnetic forces, Proc. ASME Fluids Engineering Conf., Forum on Control of Transitional and Turbulent Flows, 7–11 July, San Diego, CA (1996).

  25. J. R. Roth, C. Liu, and M. Laroussi, Experimental generation of a steady-state glow discharge at atmospheric pressure, Paper 5P21, 19th IEEE Int. Conf. on Plasma Science, 1–3 June, 1992, Tampa, FL (1992).

  26. J. R. Roth, P. P. Tsai, C. Liu, M. Laroussi, and P. D. Spence, One Atmosphere Uniform Glow Discharge Plasma, US Patent 5,414,324, Issued May 9, 1995.

  27. J. R. Roth, Investigation of uniform glow discharge in atmospheric air, AFOSR Final Scientific Report, PSL-95-4 (1995).

  28. D. M. Sherman, S. P. Wilkinson, and J. R. Roth, Paraelectric Gas Flow Accelerator, US Patent US 6200539 B1, March 13 (2001).

  29. R. Ben Gadri, Numerical Simulation of an Atmospheric Pressure and Dielectric Barrier Controlled Glow Discharge, Ph. D. of the University Paul Sabatier of Toulouse, France. No. 2644, 30 April 1997.

  30. R. Ben Gadri, One atmosphere glow discharge structure revealed by computer modeling, IEEE Trans. Plasma Sci., 27, No. 1, 36–37 (1999).

    Article  Google Scholar 

  31. J. R. Roth, Method and Apparatus for Covering Bodies with a Uniform Glow Discharge Plasma and Applications Thereof, US Patent 5,669,583, Sept. 23 1997.

  32. L. A. Vasil’ev, Shadow Methods [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  33. R. H. Haddlestone and S. L. Leonard (Eds.), Plasma Diagnostics [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  34. I. K. Kikoin (Ed.), Tables of Physical Quantities [Russian translation], Atomizdat, Moscow (1976).

    Google Scholar 

  35. R. C. Gonzales, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB [Russian translation], Tekhnosfera, Moscow (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 2, pp. 364–370, March–April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khramtsov, P.P., Penyazkov, O.G., Doroshko, M.V. et al. Shadow method for measuring the average electron density in an ionized gas flow induced by a high-frequency barrier discharge. J Eng Phys Thermophy 82, 361–367 (2009). https://doi.org/10.1007/s10891-009-0184-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0184-y

Keywords

Navigation