Skip to main content
Log in

Mathematical modeling of convective diffusion of soluble compounds in the soil at nonisothermal moisture transfer

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper presents a mathematical model of solute transport in a soil with account for nonisothermal moisture transfer. The model is based on the equations of convective diffusion, sorption kinetics, and two-phase filtration, on the isotherms of water sorption by the soil, and on the thermodynamic laws. A numerical analysis of the influence of various physical mechanisms on the process of mass transfer in the soil has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Fetter, Contaminant Hydrogeology, Prentice-Hall Publishing Company (1998).

  2. J. Bear and A. Verruijt, Modeling Groundwater Flow and Pollution, D. Reidel Publishing Co (1987).

  3. J. Simunek, M. Th. van Genuchten, and M. Sejna, The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media, Version 3.0. Department of Environmental Sciences, University of California, Riverside (2005).

    Google Scholar 

  4. A. V. Luikov, Theory of Drying [in Russian], Énergiya, Moscow (1968).

    Google Scholar 

  5. A. S. Shubin, Influence of Temperature and Moisture Parameters on the Moisture Transfer [in Russian], Profizdat, Moscow (1958).

    Google Scholar 

  6. K. Bunzl, W. Kracke, and W. Schimmack, Vertical migration of 239,240Pu, 241Am, and 137Cs. Fallout in a forest soil under spruce, Analyst, No. 117, 469–473 (1992).

  7. V. A. Knatko, A. G. Skomorokhov, V. D. Asimova, et al., Characteristics of 90Sr, 137Cs and 239,240Pu migration in undisturbed soils of southern Belarus after the Chernobyl accident, J. Environ. Radioactivity, 30, No 2, 185–196 (1996).

    Article  Google Scholar 

  8. V. M. Nikolaevskii, Motion of Hydrocarbon Mixtures in a Porous Medium [in Russian], Nedra, Moscow (1968).

    Google Scholar 

  9. R. A. Poluéktov, A. G. Topazh, and V. Mirshel’, Comparison of empirical and theoretical approaches in mathematical modeling of agroecosystems using as an example photosynthesis, Mat. Modelir., 10, No. 7, 25–36 (1998).

    Google Scholar 

  10. E. V. Shtein, A Course in the Physics of Soils: Textbook [in Russian], Izd. MGU, Moscow (2005).

    Google Scholar 

  11. T. M. Roshchina, Adsorption phenomena and surface, Sorosovsk. Obrazov. Zh., No. 2, 89–94 (1998).

    Google Scholar 

  12. N. V. Pavlyukevich, Introduction to the Theory of Heat and Mass Transfer in Porous Media [in Russian], ITMO, Minsk (2001).

    Google Scholar 

  13. G. P. Brovka, Heat-and Mass Transfer in Freezing Natural Disperse Systems [in Russian], Nauka i Tekhnika, Minsk (1991).

    Google Scholar 

  14. G. P. Brovka, Calculation of convective transfer in water-soluble compounds with account for the sorption kinetics, Inzh.-Fiz. Zh., 74, No. 3, 25–29 (2001).

    Google Scholar 

  15. I. I. Lishtvan, G. P. Brovka, I. V. Dedyulya, and E. N. Rovdan, The characteristics of the sorption and migration of the radionuclides Cs-137 and Sr-90 in natural disperse systems, Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk, No. 4, 79–83 (1996).

  16. V. M. Prokhorov (R. M. Aleksakhin Ed.), Migration of Radioactive Contaminants in Soils. Physicochemical Mechanisms and Modeling [in Russian], Énergiya, Moscow (1981).

    Google Scholar 

  17. G. Z. Serebryanyi and M. L. Zhemzhurov, Analytical model of migration of radionuclides in porous media, Inzh.-Fiz. Zh., 76, No. 6, 146–150 (2003).

    Google Scholar 

  18. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al. (I. S. Grigor’ev and E. Z. Meilikhov Eds.), Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991).

    Google Scholar 

  19. S. P. Kundas, N. N. Grinchik, and I. A. Gishkelyuk, A mathematical model of the migration of radionuclides in the soil, Vest. Polotsk. Gos. Univ., No. 3, 56–60 (2005).

    Google Scholar 

  20. S. Kundas, N. Grinchik, and I. Gishkeluk, Computer simulation of non-isothermal water and solute transport in soil, J. University Appl. Sci. Mittweida (Germany), No. 13, 27–30 (2005).

    Google Scholar 

  21. N. N. Grinchik, Processes of Transfer in Porous Media, Electrolytes, and Membranes [in Russian], ITMO, Minsk (1991).

    Google Scholar 

  22. M. P. Vukalovich, Tables of the Thermophysical Properties of Water and Steam [in Russian], Izd. Standartov, Moscow (1969).

    Google Scholar 

  23. O. Zenkevich and K. Morgan, Finite Elements and Approximation [in Russian], Mir, Moscow (1986).

    Google Scholar 

  24. Femlab 3.0. User’s Guide, Comsol, Los Angeles (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Gishkelyuk.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 81, No. 5, pp. 924–935, September–October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gishkelyuk, I.A., Kundas, S.P. & Grinchik, N.N. Mathematical modeling of convective diffusion of soluble compounds in the soil at nonisothermal moisture transfer. J Eng Phys Thermophy 81, 963–975 (2008). https://doi.org/10.1007/s10891-009-0117-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0117-9

Keywords

Navigation