Skip to main content
Log in

Nonstationary heating of two-dimensional metal nanoparticles by laser radiation

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A numerical solution of the problem of nonstationary heating of a two-dimensional nanoparticle by laser radiation in the approximation of a constant temperature over the nanoparticle volume is presented. The asymptotes to the heating temperature for long times and for maximum heating of a nanoparticle at long durations of laser radiation have been obtained. It is shown that the temperatures of heating of silver and gold nanoparticles subjected to laser radiation at a resonance wavelength of plasmons are appreciable and may reach the boiling temperature of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  2. S. V. Zimovets and P. I. Geshev, Method of boundary integral equations for calculating the scattering of light on two-dimensional nanoparticles, Zh. Tekh. Fiz., 76, No. 3, 1–6 (2006).

    Google Scholar 

  3. P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschhold, Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface, Phys. Rev. B, 70, 075402-16 (2004).

    Google Scholar 

  4. P. I. Geshev and K. Dickmann, Enhanced radiation of a dipole placed between a metallic surface and a nanoparticle, J. Opt. A: Pure Appl. Opt., 8, 161–173 (2006).

    Article  Google Scholar 

  5. M. Moskovits, Surface-enhanced spectroscopy, Rev. Mod. Phys., 57, No. 3, Pt. 1, 783–826 (1985).

    Article  Google Scholar 

  6. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. S. Feld, Population pumping of excited vibrational states by surface-enhanced Raman scattering, Phys. Rev. Lett., 76, 2444–2447 (1996).

    Article  Google Scholar 

  7. S. Nie and S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, 275, 1102–1106 (1997).

    Article  Google Scholar 

  8. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Surface-enhanced Raman scattering and biophysics, J. Phys., 14, 597–624 (2002).

    Google Scholar 

  9. D. P. O’Neal, L. R. Hirsch, N. J. Halas, and J. D. Payne, Photo-thermal tumor ablation in mice using infrared-adsorbing nanoparticles, Cancer Lett., 209, 171–176 (2004).

    Article  Google Scholar 

  10. L. R. Hirsch, A. M. Gobin, A. R. Lowery, R. A. Drezek, N. J. Halas, and J. L. West, Metal nanoshells, Annals Biomed. Eng., 34, No. 1, 15–22 (2006).

    Article  Google Scholar 

  11. L. A. Bird, Molecular Gas Dynamics [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  12. P. I. Geshev, S. Klein, and K. Dickmann, Calculation of the temperature and thermal expansion of an STM tip heated by a short laser pulse, Appl. Phys. B, 76, 313–317 (2003).

    Article  Google Scholar 

  13. A. Downes, D. Salter, and A. Elfick, Heating effects in tip-enhanced optical microscopy, Opt. Exp., 14, No. 12, 5216–5222 (2006).

    Article  Google Scholar 

  14. A. I. Volokitin and B. N. J. Persson, Radiative heat transfer between nanostructures, Phys. Rev. Lett., 63, 205404–11 (2001).

    Google Scholar 

  15. G. Domingues, S. Voltz, K. Joulain, and J.-J. Greffet, Heat transfer between two nanoparticles through near field interaction, Phys. Rev. Lett., 94, 85901–4 (2005).

    Article  Google Scholar 

  16. Yu. V. Martynenko and L. I. Ognev, Thermal radiation of nanoparticles, Zh. Tekh. Fiz., 75, No. 11, 130–132 (2005).

    Google Scholar 

  17. A. Ya. Guva, Brief Thermophysical Handbook [in Russian], Sibvuzizdat, Novosibirsk (2002).

    Google Scholar 

  18. M. Quinten, Optical constant of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV, Z. Phys. B, 101, 211–217 (1996).

    Article  Google Scholar 

  19. E. Palik, Handbook of Optical Constants of Solids, Academic Press, New York (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 81, No. 5, pp. 936–943, September–October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimovets, S.V., Geshev, P.I. Nonstationary heating of two-dimensional metal nanoparticles by laser radiation. J Eng Phys Thermophy 81, 976–984 (2008). https://doi.org/10.1007/s10891-009-0114-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0114-z

Keywords

Navigation