We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Statistical analysis of speckle fields in digital laser monitoring of the microstructure of paper

  • Optical Methods in Thermophysical Measurements
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

It has been shown that digital dynamic speckle photography is an effective method for quantitative diagnostics of changes in the structure of paper processed by pulsed discharge. A theory of the dynamic statistics of speckle fields and mathematical relations are given. In using optical magnification \(\mathfrak{M}\) = 1, the software developed permits fast statistical processing of up to 250,000 microzones in a two-dimensional CCD image of size 20 × 30 mm. The results obtained point to a high spatial and temporal resolution of the method and the possibility of its real-time realization. It has been shown that noise filtering is an important part of speckle image processing. The software permits filtering both in direct calculation of the correlation function and in the Fourier plane with the use of the fast Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nondestructive testing: http://en.wikipedia.org/wiki/Nondestructive_testing.

  2. F. J. Weinberg, Optics of Flame, Butterworth, London (1963).

    Google Scholar 

  3. W. Hauf and U. Grigull, Optical methods in heat transfer, Adv. in Heat Transfer, 6, 133–366 (1970).

    Google Scholar 

  4. K. S. Shifrin, Light Scattering in a Turbid Medium [in Russian], GITTL, Moscow (1951).

    Google Scholar 

  5. L. A. Chernov, Propagation of Waves in a Medium with Random Inhomogeneities [in Russian], Izd. AN SSSR, Moscow (1958).

    Google Scholar 

  6. A. P. Ivanov, Optics of Scattering Media [in Russian], Nauka i Tekhnika, Minsk (1969).

    Google Scholar 

  7. H. C. Van de Hulst, Light Scattering by Small Particles [Russian translation], IL, Moscow (1961).

    Google Scholar 

  8. Yu. E. Nesterikhin and R. I. Soloukhin, Rapid Measurements in the Gas Dynamics and Physics of Plasma [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  9. W. Merzkirch, Flow Visualization, 2nd edn., Academic Press, Orlando (1987).

    MATH  Google Scholar 

  10. T. S. Duranni and C. A. Grated, Laser Systems in Flow Measurements [Russian translation], Énergiya, Moscow (1980).

    Google Scholar 

  11. V. F. Klimkin, A. N. Panyrin, and R. I. Soloukhin, Optical Methods of Recording Fast Processes [in Russian], Nauka, Novosibirsk (1980).

    Google Scholar 

  12. R. K. Erf (Ed.), Speckle Metrology, Academic Press, New York (1978).

    Google Scholar 

  13. M. Francon, La Granullarite Laser (Spekle) et ses Applications en Optique [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  14. R. S. Sirohi (Ed.), Speckle Metrology, Marcel Dekker Inc., New York (1993).

    Google Scholar 

  15. N. Fomin, Speckle Photography for Fluid Mechanics Measurements, Springer Verlag, Berlin (1998).

    MATH  Google Scholar 

  16. M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Springer Verlag, Berlin (1998).

    Google Scholar 

  17. J. M. Burch and J. M. J. Tokarski, Production multiple beam fringes from photographic scatterers, Optica Acta, 15,No. 2, 101–111 (1968).

    Google Scholar 

  18. A. Ya. Khairulina, Investigation of biocells by light-scattering methods, in: A. N. Ivanov (Ed.), Light Propagation in a Disperse Medium [in Russian], Nauka i Tekhnika, Minsk (1982), pp. 275–292.

    Google Scholar 

  19. G. Benedeck, Optical mixing spectroscopy and its applications to the problems of physics, chemistry, biology, and engineering, Usp. Fiz. Nauk, 106,No. 3, 481–504 (1972).

    Google Scholar 

  20. H. Z. Cummins and E. R. Pike, Photon Correlation and Light Beating Spectroscopy [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  21. J. D. Briers, Laser Doppler and time varying speckle: a reconciliation, J. Opt. Soc. Am., 13, 345–350 (1996).

    Google Scholar 

  22. N. B. Bazylev, E. I. Lavinskaya, and N. A. Fomin, Laser digital speckle anemometry of flows in the microchannels of fuel elements, Inzh.-Fiz. Zh., 79,NO. 6, 176–189 (2006).

    Google Scholar 

  23. N. B. Bazylev, E. I. Lavinskaya, S. A. Naumovich, S. P. Rubnikovich, and N. A. Fomin, Laser probing of bio-cells by the methods of dynamic quasi-real-time speckle photography, Dokl. Nats. Akad. Nauk Belarusi, 47,No. 7, 46–50 (2003).

    Google Scholar 

  24. C. D. Meinhart, S. T. Wereley, and M. H. M. Gray, Volume illumination for two-dimensional particle image velocimetry, Meas. Sci. Technol., 11, 809–814 (2000).

    Article  Google Scholar 

  25. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, PIV measurements of a microchannel flow, Exp. Fluids, 27,No. 5, 414–419 (1999).

    Article  Google Scholar 

  26. J. P. Prenel, R. Porkar, and A. El. Rhassouli, Three-dimensional flow analysis by means of sequential and volumetric laser sheet illumination, Exp. Fluids, 7, 133–137 (1989).

    Article  Google Scholar 

  27. N. B. Bazylev, S. M. Vlasenko, E. I. Lavinskaya, and N. A. Fomin, quasi-real-time, Digital speckle photography of fast processes, Dokl. Nats. Akad. Nauk Belarusi, 45,No. 5, 55–59 (2001).

    Google Scholar 

  28. T. Yoshimura, Statistical properties of dynamic speckles, J. Opt. Soc. Am., 3, 1032–1054 (1986).

    Article  Google Scholar 

  29. J. C. Dainty (Ed.), Laser Speckle and Related Phenomena, Springer Verlag, Berlin (1984).

    Google Scholar 

  30. I. G. Stewart, Introduction to Fourier Optics [Russian translation], Mir, Moscow (1985).

    Google Scholar 

  31. E. I. Lavinskaya, S. Martem’yanov, J.-B. Solnier, and N. A. Fomin, Limited-projection laser tomography of combined gas-dynamic flows, Inzh.-Fiz. Zh., 77,No. 5, 94–104 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 80, No. 4, pp. 127–137, July–August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azharonok, V.V., Bazylev, N.B., Lavinskaya, E.I. et al. Statistical analysis of speckle fields in digital laser monitoring of the microstructure of paper. J Eng Phys Thermophy 80, 769–780 (2007). https://doi.org/10.1007/s10891-007-0104-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-007-0104-y

Keywords

Navigation