Skip to main content
Log in

Experimental study of the friction stress and true gas content in upward bubbly flow in a vertical tube

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

An experimental study of the laminar, transient, and turbulent conditions of the flow of monodispersed gas-liquid mixtures with one-and two-millimeter bubbles has been made. Tube-parameter-averaged data on the development of friction stress on the wall and its pulsations have been obtained. The asymmetry parameter characterizing the nonuniformity of the friction stress distribution along the tube perimeter has been introduced. Flow conditions with a strong asymmetry have been revealed. The true gas content has been calculated by the Zuber-Hench formula [1]. For flow conditions with wall peaks of the gas content, the calculation data are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Zuber and J. Hench, Rept. No. 62GL 100, General Electric Co., Schenectady, New York (1962).

    Google Scholar 

  2. M. Kh. Ibragimov, V. P. Bobkov, and N. A. Tychinskii, Investigation of the behavior of the gas phase in a turbulent water-gas mixture flow in channels, Teplofiz. Vys. Temp., 11, No. 5, 1051–1061 (1973).

    Google Scholar 

  3. A. Serizawa, Fluid-Dynamic Characteristics of Two-Phase Flow, Ph. D. Thesis, Kyoto University, Japan (1974).

    Google Scholar 

  4. Y. Sato, M. Sadatomi, and K. Sekoguchi, Momentum and heat transfer in two-phase bubbly flow, Int. J. Multiphase Flow, 7, 167–177 (1981).

    Article  MATH  Google Scholar 

  5. S. K. Wang, S. J. Lee, O. C. Jones, and R. T. Lahey, 3D turbulence structure and phase distribution measurements in bubbly two-phase flows, Int. J. Multiphase Flow, 13, 327–343 (1987).

    Article  Google Scholar 

  6. N. V. Valukina and O. N. Kashinskii, Investigation of the friction stress on the wall in a monodisperse gas-liquid flow. Characteristic features of the gas-liquid moisture flow at low Reynolds numbers, Prikl. Mekh. Tekh. Fiz., No. 1, 93–98 (1979).

  7. J. L. Achard and A. Cartellier, Local characteristics of upward laminar bubbly flows, PCH, 6, No. 5/6, 841–852 (1985).

    Google Scholar 

  8. O. N. Kashinsky, L. S. Timkin, and A. Cartellier, Experimental study of “laminar” bubble flow in vertical pipe, Exp. Fluids, No. 14, 308–314 (1993).

    Google Scholar 

  9. S. P. Antal, R. T. Lahey, and J. E. Flaherty, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, Int. J. Multiphase Flow, 17, 635–652 (1991).

    Article  Google Scholar 

  10. Q. Song, R. Luo, X. Y. Yang, and Z. Wang, Phase distribution for upward laminar dilute bubbly flows with non-uniform bubble sizes in a vertical pipe, Int. J. Multiphase Flow, 27, 379–390 (2001).

    Article  Google Scholar 

  11. A. Cartellier, O. Kashinsky, and L. Timkin, Experimental characterization of pseudo-turbulence in Poiseuille bubbly flow, in: Proc. 2nd Int. Conf. on Multiphase Flow, 3–7 April 1995, Kyoto, Japan (1995), pp. IF1-27–IF1-33.

  12. O. N. Kashinskii, R. S. Gorelik, and V. V. Randin, Hydrodynamics of vertical bubbly flows at low liquid phase velocities, in: Gas-Liquid Flows [in Russian], Novosibirsk, ITF SO AN SSSR (1990), pp. 44–59.

    Google Scholar 

  13. L. S. Timkin, N. Riviere, A. Cartellier, and O. N. Kashinsky, Performance of electrochemical probe for local void fraction measurements in air-water flows, Rev. Sci. Instrum., 74, No. 8, 3784–3786 (2003).

    Article  Google Scholar 

  14. N. Zuber and J. A. Findlay, Average volume concentration of phases in two-phase flow systems, J. Heat Transfer, No. 4, 453–467 (1965).

    Google Scholar 

  15. T. Hibiki and M. Ishii, Distribution parameter and drift velocity of drift-flux model in bubbly flow, Int. J. Heat Mass Transfer, 45, 707–721 (2002).

    Article  MATH  Google Scholar 

  16. X. Shen, K. Mishima, and H. Nakamura, Two-phase phase distribution effect on drift-flux parameters in a vertical large diameter pipe, in: Proc. 3rd Int. Symp. on Two-Phase Flow Modeling and Experimentation, 22–24 September 2004, Pisa, Italy (2004), CD paper jp26.

  17. S. Guet, G. Ooms, R. V. A. Oliemans, and R. F. Mudde, Bubble size effect on low liquid input drift-flux parameters, Chem. Eng. Sci., 59, 3315–3329 (2004).

    Article  Google Scholar 

  18. L. S. Timkin, Measurement of the local slip velocity of bubbles in an upward pseudoturbulent flow, Teplofiz. Aéromekh., 7, No. 1, 101–114 (2000).

    Google Scholar 

  19. V. E. Nakoryakov, A. P. Burdukov, O. N. Kashinskii, and P. I. Geshev, Electrodiffusion Method for Investigation of Local Characteristics of Turbulent Flows [in Russian], Novosibirsk, ITF SO AN SSSR (1986).

    Google Scholar 

  20. G. B. Wallis, The terminal speed of single drops or bubbles in an infinite medium, Int. J. Multiphase Flow, 1, 491–511 (1974).

    Article  MathSciNet  Google Scholar 

  21. O. N. Kashinsky and L. S. Timkin, Fluctuating wall shear stress in upward pseudo-turbulent bubbly flow, in: G. P. Celata, P. D. Marco, and R. K. Shah (Eds.), in: Proc. Second Int. Symp. “Two-Phase Flow Modeling and Experimentation 1999,” 23–26 May 1999, Rome, Italy (1999), Vol. 2, pp. 1117–1121.

  22. J. Laufer, The Structure of Turbulence in Fully Developed Pipe Flow, NACA, Rep. 1174 (1954), pp. 1–18.

  23. L. S. Timkin, R. S. Gorelik, and P. D. Lobanov, Emergence of a single bubble in upward laminar flow: slip velocity and wall friction, Inzh.-Fiz. Zh., 78, No. 4, 129–135 (2005).

    Google Scholar 

  24. J. B. Joshi, V. S. Vitankar, A. A. Kulkarni, M. T. Dhotre, and K. Ekambara, Coherent flow structures in bubble column reactors, Chem. Eng. Sci., 57, 3157–3183 (2002).

    Article  Google Scholar 

  25. C. Garnier, M. Lance, and J. L. Marie, Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction, Exp. Thermal Fluid Sci., 26, 811–815 (2002).

    Article  Google Scholar 

  26. R. H. Davis and A. Acrivos, Sedimentation of noncolloidal particles at low Reynolds numbers, Ann. Rev. Fluid Mech., 17, 91–118 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 6, pp. 68–80, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashinckii, O.N., Timkin, L.S., Gorelik, R.S. et al. Experimental study of the friction stress and true gas content in upward bubbly flow in a vertical tube. J Eng Phys Thermophys 79, 1117–1129 (2006). https://doi.org/10.1007/s10891-006-0213-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-006-0213-z

Keywords

Navigation