Skip to main content
Log in

Selective mass transfer in a membrane absorber

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A theoretical study of selective mass transfer in a plane-frame membrane absorber (contactor) has been made. A mathematical model of the process has been developed and the process of purification of a gas mixture depending on the flow parameters, the membrane, and the feeding-mixture composition has been studied with its help.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gabelman and S.-T. Hwang, Hollow fiber membrane contactors, J. Membrane Sci., 159, 61–109 (1999).

    Article  Google Scholar 

  2. H. B. Al-Saffar, B. Ozturk, and R. Hughes, A comparison of porous and non-porous gas-liquid membrane contactors for gas separation, Trans. Inst. Chem. Eng., 75 A, 685–692 (1997).

    Article  Google Scholar 

  3. Z. R. Karichev and A. L. Mulder, Use of composite hollow-fiber membranes for blood oxygenation, Teor. Osnovy Khim. Tekhnol., 35, No. 4, 403–409 (2001).

    Google Scholar 

  4. I. N. Bekman, D. G. Bessarabov, and R. D. Sanderson, Integrated membrane systems with a mobile liquid carrier, Vestn. Moskovsk. Univ., Ser. 2, Khimiya, 40, No. 6, 408–413 (1999).

    Google Scholar 

  5. A. Yamagiwa, K. Ito, M. Tamura, and M. Furusawa, Removal of dissolved oxygen using non-porous hollow-fiber membranes, J. Membrane Sci., 145, 111–117 (1998).

    Article  Google Scholar 

  6. V. V. Teplyakov, E. G. Sostina, I. N. Beckman, and A. I. Netrusov, Integrated membrane systems for gas separation in biotechnology: Potential and prospects, World J. Biotechnol., 12, 1–9 (1996).

    Google Scholar 

  7. V. Usachov, N. Laguntsov, A. Okunev, V. Teplyakov, and S. Glukhov, Experimental study of the membrane contactor system for gas dehumidification, Ars Separatoria Acta, No. 2, 36–46 (2003).

    Google Scholar 

  8. A. Sengupta, P. A. Peterson, B. D. Miller, J. Swchneider, and C. W. Fulk, Jr., Large-scale application of membrane contactors for gas transfer from or to ultrapure water, Sep. Purif. Technol., 14, 189–200 (1998).

    Article  Google Scholar 

  9. C. Isetti, E. Nannei, and A. Magrini, On the application of a membrane air-liquid contactor for air dehumidification, Energy Buildings, 25, 185–193 (1997).

    Article  Google Scholar 

  10. Y. Lee, R. Noble, B.-Y. Yeom, Y.-I. Park, and K.-H. Lee, Analysis of CO2 removal by hollow fiber membrane contactors, J. Membrane Sci., 194, 57–67 (2001).

    Article  Google Scholar 

  11. E. B. Gruzdev, V. K. Ezhov, N. I. Laguntsov, and B. I. Nikolaev, On the influence of longitudinal diffusion on the separation of gaseous mixtures on semipermeable membranes, Inzh.-Fiz. Zh., 51, No. 6, 916–924 (1986).

    Google Scholar 

  12. E. V. Kosykh, V. D. Borisevich, N. I. Laguntsov, and B. I. Nikolaev, On the influence of packing density on the separation characteristics of a membrane element, Teor. Osnovy Khim. Tekhnol., 24, No. 1, 127–131 (1990).

    Google Scholar 

  13. V. D. Borisevich, N. N. Grishaev, N. I. Laguntsov, and G. A. Sulaberidze, On the influence of pressure losses in the channel of a fiber membrane element on its separation characteristics, Teor. Osnovy Khim. Tekhnol., 18, No. 1, 20–24 (1984).

    Google Scholar 

  14. I. N. Bekman, D. G. Bessarabov, and R. D. Sanderson, Diffusion processes in the absorption module of a membrane contactor, Vestn. Moskovsk. Univ., Ser. 2, Khimiya, 41, No. 4, 266–270 (2000).

    Google Scholar 

  15. I. N. Bekman, D. G. Bessarabov, and R. D. Sanderson, Separation of the gaseous mixture in the absorption module of a membrane contactor, Vestn. Moskovsk. Univ., Ser. 2, Khimiya, 42, No. 1, 60–66 (2001).

    Google Scholar 

  16. S.-T. Hwang and K. Kammermeyer, Membranes in Separations, John Wiley & Sons, New York (1975).

    Google Scholar 

  17. I. Gyarmati, Non-Equilibrium Thermodynamics [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  18. I. Prigogine and D. Kondepudi, Modern Thermodynamics. From Heat Engines to Dissipative Structures [Russian translation], Mir, Moscow (2002).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 6. Hydrodynamics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  20. E. V. Levin and C. Ying, Diffusion transport vector for multicomponent separation in ultracentrifuge, Sep. Sci. Technol., 30, No. 18, 3441–3454 (1995).

    Google Scholar 

  21. N. I. Laguntsov, E. V. Levin, and V. V. Tepliakov, Multicomponent gas separation in a channel with selective permeable walls under a back diffusion process, in: Proc. XIV Int. Symp. “ARS SEPARATORIA’99,” 5–8 July 1999, Gniew, Poland (1999), p. 96.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 5, pp. 26–35, September–October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okunev, A.Y., Laguntsov, N.I. Selective mass transfer in a membrane absorber. J Eng Phys Thermophys 79, 864–874 (2006). https://doi.org/10.1007/s10891-006-0177-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-006-0177-z

Keywords

Navigation