Skip to main content
Log in

Nonstationary heat and mass transfer in evaporative cooling of flowing liquid films

  • Heat Conduction and Heat Exchange in Technological Processes
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A mathematical model of nonstationary evaporative cooling of a laminar liquid film flowing down a vertical surface in its blowing with a countercurrent steam-air flow has been developed. The problem of heat and mass transfer has been formulated in a conjugate statement. The calculated data on the time change in the temperature and concentration fields in the steam-air flow and the liquid film as well as in the density of the heat flux on the flowing-film surface have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Sobin and G. V. Dashkov, Heat and mass transfer under cooling of flowing water sheets by an air counterflow, Inzh.-Fiz. Zh., 78, No. 4, 27–36 (2005).

    Google Scholar 

  2. A. V. Vlasov, G. V. Dashkov, A. D. Solodukhin, N. N. Stolovich, S. P. Fisenko, and A. V. Shcherbich, Modeling of a pulsed mode of reflux in an evaporative tower-cooler, in: Science to Power Engineering [in Russian], Collection of Sci. Papers, Minsk (1999), pp. 125–131.

    Google Scholar 

  3. Method of Enhancement of Heat Transfer in a Sectioned Tower-Cooler, Patent RB No. 2724 (Application No. 960310 as of 21.06.1996).

  4. G. I. Gimbutis, Heat Transfer in Gravity Draining of a Liquid Film [in Russian], Mokslas, Vilnius (1988).

    Google Scholar 

  5. L. D. Berman, Evaporative Cooling of Circulating Water [Russian translation], Gosénergoizdat, Moscow (1957).

    Google Scholar 

  6. V. M. Sobin, Heat and Mass Transfer in Film Flows under Aggravated Conditions [in Russian], Nauka i Tekhnika, Minsk (1994).

    Google Scholar 

  7. S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, Waves on the Surface of a Vertical Falling Liquid Film [in Russian], Preprint No. 36 of the Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1979).

    Google Scholar 

  8. N. A. Voinov, A. N. Nikolaev, and N. A. Nikolaev, Heat transfer in the liquid film flowing along smooth and rough surfaces, Teor. Osnovy Khim. Tekhnol., 32, No. 1, 28–32 (1998).

    Google Scholar 

  9. K. R. Chun and R. A. Seban, Heat transfer to evaporated liquid films, Trans. ASME, J. Heat Transfer, No. 4, 71–77 (1971).

  10. O. C. Sandall, O. T. Hanna, and C. L. Wilson, Heat transfer across turbulent falling liquid films, AIChE Symp. Ser., 80, No. 236, 3–9 (1984).

    Google Scholar 

  11. N. A. Nikolaev, L. P. Kholpanov, V. A. Malyusov, and N. M. Zhavoronkov, Enhancement of mass transfer in a liquid film moving in a co-current high-speed flow of gas or vapor, Teor. Osnovy Khim. Tekhnol., 23, No. 5, 563–568 (1989).

    Google Scholar 

  12. V. M. Marushkin, V. P. Vasil’ev, K. S. Strelkova, A. V. Rezvov, and G. E. Marushkina, Heat transfer in gravity flow of liquid films, Fiz. Vys. Temp., 27, No. 4, 723–729 (1989).

    Google Scholar 

  13. V. P. Vorotilin and N. N. Kulov, Film flow in pulsed reflux, Teor. Osnovy Khim. Tekhnol., 12, No. 2, 223–230 (1978).

    Google Scholar 

  14. W. E. Nakajama, Enhancement of heat transfer, in: Proc. 7th Int. Heat Transfer Conf., Vol. 1, München (1982), pp. 223–240.

    Google Scholar 

  15. S. P. Fisenko, A. I. Petruchik, and A. D. Solodukhin, Evaporative cooling of water in a natural draft cooling tower, Int. J. Heat Mass Transfer, 45, 4683–4694 (2002).

    Article  MATH  Google Scholar 

  16. A. I. Petruchik and S. P. Fisenko, Two-dimensional calculation of the parameters of a steam-air mixture in a film-type heat and mass exchanger, Inzh.-Fiz. Zh., 76, No. 5, 81–86 (2003).

    Google Scholar 

  17. W. Nusselt, Die Oberflachenkondensation des Wasserdampfes, Z. VDI, Bd. 60, 541–546 (1916).

    Google Scholar 

  18. L. S. Leibenzon, Manual of Oil-Field Mechanics. Pt. 1. Hydraulics [in Russian], GNTI, Moscow (1931).

    Google Scholar 

  19. S. Gol’dshtein (Ed.), Modern Hydroaeromechanics of a Viscous Fluid [in Russian], Vol. 1, IL, Moscow (1948).

    Google Scholar 

  20. B. S. Petukhov, Heat Transfer and Resistance in Laminar Liquid Flow in Tubes [in Russian], Énergiya, Moscow (1967).

    Google Scholar 

  21. L. Schiller, Strömung in Röhren [Russian translation], OMTI, Moscow (1936).

    Google Scholar 

  22. H. Schlichting, Boundary-Layer Theory [Russian translation], Nauka, Moscow (1974).

    Google Scholar 

  23. L. I. Sedov, Continuum Mechanics [in Russian], Vol. 1, Nauka, Moscow (1970).

    Google Scholar 

  24. G. G. Chornyi, Laminar motion of gas and liquid in a boundary layer with a discontinuity surface, Izv. Akad. Nauk SSSR, OTN, No. 12, 38–61 (1954).

    Google Scholar 

  25. G. A. Tirskii, Conditions on the surface with strong discontinuity in multicomponent mixtures, Prikl. Mat. Mekh., 25, Issue 2 (1961).

    Google Scholar 

  26. N. V. Pavlyukevich, G. E. Gorelik, V. V. Levdanskii, V. G. Leitsina, and G. N. Rudin, Physical Kinetics and Transport Processes in Phase Conversions [in Russian], Nauka i Tekhnika, Minsk (1980).

    Google Scholar 

  27. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 1, pp. 3–10, January–February, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashkov, G.V., Nogotov, E.F., Pavlyukevich, N.V. et al. Nonstationary heat and mass transfer in evaporative cooling of flowing liquid films. J Eng Phys Thermophys 79, 1–9 (2006). https://doi.org/10.1007/s10891-006-0059-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-006-0059-4

Keywords

Navigation