Skip to main content
Log in

Kinetic models of combustion of kerosene and its components

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

Modern investigations on creation of kinetic models of combustion of hydrocarbons entering into the composition of kerosene and kerosene as a whole have been analyzed. Certain recommendations on application of these models to calculation of actual gasdynamic flows have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Maurice and T. Edwards, Liquid hydrocarbon fuels for hypersonic propulsion, in: E. T. Curran and S. N. B. Murthy (Eds.), Scramjet Propulsion Progr. Astronaut. Aeronaut, Reston, AIAA, 189, 757–822 (2000).

  2. G. Ya. Gerasimov, S. A. Losev, and V. N. Makarov, AVOGADRO program: Environmental problems of heat engineering, Inzh.-Fiz. Zh., 69, No. 6, 921–926 (1998).

    Google Scholar 

  3. N. F. Dubovkin, V. G. Malanicheva, Yu. P. Massur, and E. P. Fedorov, Physicochemical and Service Properties of Jet Fuels. Handbook [in Russian], Khimiya, Moscow (1985).

    Google Scholar 

  4. S. Granata, T. Faravelli, and E. Ranzi, A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes, Combust. Flame, 132, No. 4, 533–544 (2003).

    Article  Google Scholar 

  5. C. Vovelle, J.-L. Delfau, and M. Reuillon, Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressures, in: H. Bockhorn (Ed.), Soot Formation in Combustion, Mechanisms and Models, Springer Series in Chemical Physics, 59, 51–65, Springer, Berlin (1994).

    Google Scholar 

  6. A. A. Bratkov (Ed.), Chymmotology of Jet Fuels and Propellants [in Russian], Khimiya, Moscow (1987).

    Google Scholar 

  7. J. M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Progr. Energy Combust. Sci., 29, No. 6, 599–634 (2003).

    Article  Google Scholar 

  8. J. F. Griffiths, Reduced kinetic models and their application to practical combustion systems, Progr. Energy Combust. Sci., 21, No. 1, 25–107 (1995).

    Article  Google Scholar 

  9. R. Hilbert, F. Tap, H. El-Rabii, and D. Thevenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Progr. Energy Combust. Sci., 30, No. 1, 61–117 (2004).

    Article  Google Scholar 

  10. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., Summary table of evaluated kinetic data for combustion modeling, Combust. Flame, 98, No. 1/2, 59–79 (1994).

    Article  Google Scholar 

  11. W. Wang and B. Rogg, Reduced kinetic mechanisms and their numerical treatment. I: Wet CO flames, Combust. Flame, 94, No. 3, 271–292 (1993).

    Article  Google Scholar 

  12. J. Warnatz, Rate constants of reactions with participation of particles containing C, H, and O atoms, in: W. C. Gardiner, Jr. (Ed.), Combustion Chemistry [Russian translation], Mir, Moscow (1988), pp. 209–314.

    Google Scholar 

  13. S. Kojima, Detailed modeling of n-butane autoignition chemistry, Combust. Flame, 99, No. 1, 87–136 (1994).

    Article  Google Scholar 

  14. J. Warnatz, Chemistry of high-temperature combustion of alkanes up to octane, in: Proc. 20th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1984), pp. 845–856.

    Google Scholar 

  15. H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A comprehensive modeling study of n-heptane oxidation, Combust. Flame, 114, No. 1/2, 149–177 (1998).

    Article  Google Scholar 

  16. H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combust. Flame, 129, No. 3, 253–280 (2002).

    Article  Google Scholar 

  17. N. A. Slavinskaya and A. M. Starik, Kinetic mechanisms of ignition of iso-octane in mixture with air, Fiz. Goreniya Vzryva, 40, No. 1, 42–63 (2004).

    Google Scholar 

  18. G. Bikas and N. Peters, Kinetic modeling of n-decane combustion and autoignition, Combust. Flame, 126, No. 1/2, 1456–1475 (2001).

    Article  Google Scholar 

  19. A. Ristory, P. Dagaut, and M. Cathonnet, The oxidation of n-hexadecane: Experimental and detailed kinetic modeling, Combust. Flame, 125, No. 3, 1128–1137 (2001).

    Article  Google Scholar 

  20. W. J. Pitz, C. K. Westbrook, W. M. Proscia, and F. L. Dryer, A comprehensive chemical kinetic reaction mechanism for the oxidation of n-butane, in: Proc. 20th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1984), pp. 831–843.

    Google Scholar 

  21. P. Dagaut, M. Reuillon, and M. Cathonnet, High-pressure oxidation of liquid fuels from low to high temperature, 1. n-Heptane and iso-octane, Combust. Sci. Technol., 95, No. 16, 233–260 (1994).

    Google Scholar 

  22. A. El-Bakali, J.-L. Delfau, and C. Vovelle, Kinetic modeling of a rich, atmospheric pressure, premixed n-heptane/O2/N2 flames, Combust. Flame, 118, No. 3, 381–398 (1999).

    Article  Google Scholar 

  23. H. K. Ciezki and G. Adomeit, Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions, Combust. Flame, 93, No. 4, 421–433 (1993).

    Article  Google Scholar 

  24. R. Minetti, M. Carlier, M. Ribaucour, et al., A rapid compression machine investigation of oxidation and autoignition of n-heptane: Measurements and modeling, Combust. Flame, 102, No. 1/2, 298–309 (1995).

    Article  Google Scholar 

  25. O. Lemaire, M. Ribaaucour, M. Carlier, and R. Minetti, The production of benzene in low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene, Combust. Flame, 127, No. 1/2, 1971–1980 (2001).

    Article  Google Scholar 

  26. S. Zeppieri, K. Brezinsky, and I. Glassman, Pyrolysis studies of methylcyclohexane and oxidation of methylcyclohexane and methylcyclohexane/toluene blends, Combust. Flame, 108, No. 3, 266–286 (1997).

    Article  Google Scholar 

  27. J. Warnatz, Generation and reduction of reaction mechanisms relevant to combustion in turbines, in: G. D. Roy, S. M. Frolov, and A. M. Starik (Eds.), Combustion and Atmospheric Pollution, Torus Press, Moscow (2003), pp. 9–17.

    Google Scholar 

  28. H.-Y. Zhang and J. T. McKinnon, Elementary reactor modeling of high-temperature benzene combustion, Combust. Sci. Technol., 107, No. 46, 261–300 (1995).

    Google Scholar 

  29. P. Dagaut, G. Pengloan, and A. Ristory, Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling, Phys. Chem. Chem. Phys., 4, No. 10, 1846–1854 (2002).

    Article  Google Scholar 

  30. P. Dagaut, A. Ristori, A. El-Bakali, and M. Cathonnet, The oxidation of n-propylbenzene: Experimental results and kinetic modeling, Fuel, 81, No. 2, 173–184 (2002).

    Article  Google Scholar 

  31. M. Frenklach, Reaction mechanism of soot formation in flames, Phys. Chem. Chem. Phys., 4, No. 11, 2028–2037 (2002).

    Article  Google Scholar 

  32. H. Richter and J. B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot — A review of chemical reaction pathways, Progr. Energy Combust. Sci., 26, No. 46, 565–608 (2000).

    Article  Google Scholar 

  33. C. Venkat, K. Brezinsky, and I. Glassman, High-temperature oxidation of aromatic hydrocarbons, in: Proc. 19th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1982), pp. 143–152.

    Google Scholar 

  34. A. Tregrossi, A. Ciajolo, and R. Barbella, The combustion of benzene in rich premixed flames at atmospheric pressure, Combust. Flame, 117, No. 3, 553–561 (1999).

    Article  Google Scholar 

  35. C. Gueret, M. Cathonnet, J.-C. Boettner, and F. Gaillard, Experimental study and modeling of kerosene oxidation in a jet-stirred flow reactor, in: Proc. 23rd Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1990), pp. 211–216.

    Google Scholar 

  36. C. Bales-Gueret, M. Cathonnet, J.-C. Boettner, and F. Gaillard, Experimental study and kinetic modeling of higher hydrocarbon oxidation in a jet-stirred flow reactor, Energy & Fuels, 6, No. 2, 189–194 (1992).

    Article  Google Scholar 

  37. A. Violi, S. Yan, E. G. Eddings, et al., Experimental formulation and kinetic model for JP-8 surrogate mixtures, Combust. Sci. Technol., 174, No. 1112, 399–417 (2002).

    Article  Google Scholar 

  38. S. C. Li, B. Varatharajan, and F. A. Williams, The chemistry of JP-10 ignition, AIAA J., 39, No. 12, 2351–2356 (2001).

    Article  Google Scholar 

  39. D. F. Davidson, D. C. Horning, J. T. Hebron, et al., Shock tube measurements of JP-10 ignition, Proc. Combust. Inst., 28, No. 10, 1687–1692 (2000).

    Article  Google Scholar 

  40. Z. Wen, S. Yun, M. J. Thomson, and M. F. Lightstone, Modeling of soot formation in turbulent kerosene/air jet diffusion flames, Combust. Flame, 135, No. 3, 323–340 (2003).

    Article  Google Scholar 

  41. P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Phys. Chem. Chem. Phys., 4, No. 11, 2079–2094 (2002).

    Article  Google Scholar 

  42. G. Ya. Gerasimov and V. N. Makarov, Analysis of the mechanism of a complex chemical action by an example of radiation-chemical cleaning of gases from harmful impurities, Khim. Fiz., 16, No. 1, 89–99 (1997).

    Google Scholar 

  43. B. Bhattacharjee, D. A. Schwer, P. I. Barton, et al., Optimally-reduced kinetic models: Reaction elimination in large-scale kinetic mechanisms, Combust. Flame, 135, No. 3, 191–208 (2003).

    Article  Google Scholar 

  44. N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Combust. Flame, 128, No. 1/2, 38–59 (2002).

    Article  Google Scholar 

  45. S. Tanaka, F. Ayala, and J. C. Keck, A reduced chemical model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame, 133, No. 4, 467–481 (2003).

    Article  Google Scholar 

  46. H. Kim, S. Pae, and K. Min, Reduced chemical kinetic model for the ignition delay of hydrocarbon fuels and DME, Combust. Sci. Technol., 174, No. 8, 221–238 (2002).

    Article  Google Scholar 

  47. U. Maas and S. B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, 88, No. 3–4, 239–264 (1992).

    Article  Google Scholar 

  48. J. Nafe and U. Maas, Hierarchical generation of ILDMs of higher hydrocarbons, Combust. Flame, 135, No. 1/2, 17–26 (2003).

    Article  Google Scholar 

  49. S. H. Lam and D. A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinet., 26, No. 4, 461–486 (1994).

    Article  Google Scholar 

  50. C. K. Westbrook and F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol., 27, No. 1/2, 31–43 (1981).

    Google Scholar 

  51. V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, “Global” kinetic mechanisms for calculation of turbulent reacting flows. Pt. 1. Principal chemical process of heat release, Khim. Fiz., 19, No. 9, 112–128 (1998).

    Google Scholar 

  52. D. J. Hautman, F. L. Dryer, K. P. Schug, and I. Glassman, A multiple-step overall kinetic mechanism for the oxidation of hydrocarbons, Combust. Sci. Technol., 25, No. 5/6, 219–235 (1981).

    Google Scholar 

  53. G. Ya. Gerasimov, N. A. Zhegul’skaya, and I. B. Rozhdestvenskii, Thermodynamic and thermophysical properties of the products of combustion and conversion of organic fuels, Mat. Modelir., 10, No. 8, 3–16 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 6, pp. 14–25, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, G.Y., Losev, S.A. Kinetic models of combustion of kerosene and its components. J Eng Phys Thermophys 78, 1059–1070 (2005). https://doi.org/10.1007/s10891-006-0035-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-006-0035-z

Keywords

Navigation