Skip to main content
Log in

Relaxation thermodynamics and viscoelasticity of anisotropic polymer systems

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A theory of asymmetric viscoelasticity of anisotropic polymer systems has been formulated based on the relaxation dynamics of irreversible processes. Consideration has been given to the effect associated with the relaxation of couple stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Carlson and F. M. Leslie, The development of theory for flow and dynamic effects for nematic liquid crystals, Liquid Cryst., 26, No. 9, 1267–1280 (1999).

    Google Scholar 

  2. A. É. Aéro and A. N. Bulygin, Hydromechanics of liquid crystals, in: Advances in Science and Technology. Hydromechanics [in Russian], Vol. 7, VINITI, Moscow (1973), pp. 106–213.

    Google Scholar 

  3. P. G. De Gennes and G. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon Press, Oxford (1993).

    Google Scholar 

  4. L. D. Landau and E. M. Lifshits, Elasticity Theory [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  5. E. I. Kats and V. V. Lebedev, Dynamics of Liquid Crystals [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  6. V. S. Volkov and V. G. Kulichikhin, Anisotropic viscoelasticity of liquid crystalline polymers, J. Rheol., 34, 281–293 (1990).

    Article  Google Scholar 

  7. V. S. Volkov, Nonsymmetric viscoelasticity of liquid crystalline polymers, Vysokomolek. Soed. A, 40, No. 7, 1150–1157 (1998).

    Google Scholar 

  8. V. S. Volkov, Nonsymmetric viscoelasticity of liquid crystalline polymers, in: I. Emri (Ed.), Proc. 5th Eur. Conf. on Rheology, Slovenia (1998), pp. 240–241.

  9. V. S. Volkov and V. G. Kulichikhin, Non-symmetric viscoelasticity of anisotropic polymer liquids, Rheol. Acta, 39, 360–370 (2000).

    Article  Google Scholar 

  10. V. S. Volkov, Nonlinear problems in polymer fluid mechanics, Macromol. Symp., 160, 261–269 (2000).

    Article  Google Scholar 

  11. V. S. Volkov and V. G. Kulichikhin, Anisotropic viscoelasticity of liquid crystalline side-chain polymers, in: H. Muenstedt, J. Kaschta, and A. Merten (Eds.), Proc. 6th Eur. Conf. on Rheology, Erlangen, Germany (2002), pp. 407–408.

  12. A. I. Leonov and V. S. Volkov, A Theory of Viscoelastic Nematodynamics, Los Alamos e-print arxive: condmat. ArXiv.org 2002, No. 0202275.

  13. A. I. Leonov and V. S. Volkov, Thermodynamics and anisotropic viscoelasticity, in: H. Muenstedt, J. Kaschta, and A. Merten (Eds.), Proc. 6th Eur. Conf. on Rheology, Erlangen, Germany (2002), pp. 315–316.

  14. A. I. Leonov and V. S. Volkov, Weakly nonlinear viscoelastic nematodynamics, Inzh.-Fiz. Zh., 76, No. 3, 24–30 (2003).

    Google Scholar 

  15. A. I. Leonov and V. S. Volkov, General analysis of linear nematic elasticity, Inzh.-Fiz. Zh., 77, No. 4, 36–45 (2004).

    Google Scholar 

  16. A. I. Leonov and V. S. Volkov, Weak Viscoelastic Nematodynamics of Maxwell Type, Los Alamos e-print arxive: cond-mat. ArXiv.org 2004, No. 0408589.

  17. S. De Groot and P. Mazur, Nonequilibrium Thermodynamics [in Russian], Mir, Moscow (1964).

    Google Scholar 

  18. I. D’yarmati, Nonequilibrium Thermodynamics [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  19. R. Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev., 124, No. 4, 983–992 (1961).

    Article  MATH  Google Scholar 

  20. H. Grad, Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals, Comm. Pure Appl. Math., 5, 455–494 (1952).

    MATH  MathSciNet  Google Scholar 

  21. E. Cosserat and F. Cosserat, Theorie des Corps Deformables, Herman and Cie, Paris (1909).

    Google Scholar 

  22. F. M. Leslie, Continuum theory for nematic liquid crystals, Continuum Mech. Thermodyn., 4, 167–175 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. É. Aéro and A. V. Zakharov, Elastic deformations of liquid crystals, their stability and application in technology, in: Advances in Science and Technology. Complex and Special Branches of Mechanics [in Russian], Vol. 3, VINITI, Moscow (1988), pp. 163–237.

    Google Scholar 

  24. W. C. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29, 883–899 (1933).

    Article  MATH  Google Scholar 

  25. F. C. Frank, On the theory of liquid crystals, Discus. Faraday Soc., 25, 19–28 (1958).

    Google Scholar 

  26. J. L. Ericksen, Conservations laws for liquid crystals, Trans. Soc. Rheol., 5, 23–34 (1961).

    Article  MathSciNet  Google Scholar 

  27. J. L. Ericksen, Transversely isotropic fluids, Kolloid. Z., 173, No. 1, 117–122 (1960).

    Google Scholar 

  28. F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rat. Mech. Anal., 28, 265–283 (1968).

    Article  MATH  Google Scholar 

  29. S. Gotz, W. Stille, G. Strobl, and H. Scheuermann, Molecular weight dependence of the rotational diffusion constant and the rotational viscosity of liquid crystalline side-group polymers, Macromolecules, 26, 1520–1528 (1993).

    Google Scholar 

  30. Van der Putten, N. Schwenk, and H. W. Spiess, Ultra-slow director rotation in nematic side-group polymers detected by NMR, Liquid Cryst., 4, No. 3, 341–345 (1989).

    Google Scholar 

  31. V. S. Volkov and G. V. Vinogradov, Non-Markovian dynamics of macromolecules and viscoelastic phenomena in linear polymers, Rheol. Acta, 26, 96–99 (1988).

    Google Scholar 

  32. V. S. Volkov and A. I. Leonov, Linear viscoelasticity of dilute polymer solutions in a viscoelastic solvents, Macromolecules, 32, 7666–7673 (1999).

    Article  Google Scholar 

  33. W. Hess, Generalized Rouse theory for entangled polymeric liquids, Macromolecules, 21, 2620–2632 (1988).

    Google Scholar 

  34. K. S. Schweizer, Microscopic theory of the dynamics of polymeric liquids: General formulation of a mode-mode-coupling approach, J. Chem. Phys., 91, 5802–5821 (1989).

    Google Scholar 

  35. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 5, pp. 27–34, September–October, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, V.S. Relaxation thermodynamics and viscoelasticity of anisotropic polymer systems. J Eng Phys Thermophys 78, 862–870 (2005). https://doi.org/10.1007/s10891-006-0005-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-006-0005-5

Keywords

Navigation