Skip to main content

Advertisement

SpringerLink
Vulnerability to poverty revisited: Flexible modeling and better predictive performance
Download PDF
Download PDF
  • Open Access
  • Published: 03 February 2018

Vulnerability to poverty revisited: Flexible modeling and better predictive performance

  • Maike Hohberg1,
  • Katja Landau1,
  • Thomas Kneib1,
  • Stephan Klasen  ORCID: orcid.org/0000-0003-4078-755X2 &
  • …
  • Walter Zucchini1 

The Journal of Economic Inequality volume 16, pages 439–454 (2018)Cite this article

  • 1008 Accesses

  • 7 Citations

  • 1 Altmetric

  • Metrics details

Abstract

This paper analyzes several modifications to improve a simple measure of vulnerability as expected poverty. Firstly, in order to model income, we apply distributional regression relating potentially each parameter of the conditional income distribution to the covariates. Secondly, we determine the vulnerability cutoff endogenously instead of defining a household as vulnerable if its probability of being poor in the next period is larger than 0.5. For this purpose, we employ the receiver operating characteristic curve that is able to consider prerequisites according to a particular targeting mechanism. Using long-term panel data from Germany, we build both mean and distributional regression models with the established 0.5 probability cutoff and our vulnerability cutoff. We find that our new cutoff considerably increases predictive performance. Placing the income regression model into the distributional regression framework does not improve predictions further but has the advantage of a coherent model where parameters are estimated simultaneously replacing the original three step estimation approach.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Amemiya, T.: The maximum likelihood and the nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model. Econometrica 45(4), 955 (1977)

    Article  Google Scholar 

  • Atkinson, A.B.: Social indicators: The EU and social inclusion. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  • Bergolo, M., Cruces, G., Ham, A.: Assessing the predictive power of vulnerability measures: Evidence from panel data for Argentina and Chile. J. Income Distrib. 21(1), 28–64 (2012)

    Google Scholar 

  • Biewen, M., Jenkins, S.P.: A framework for the decomposition of poverty differences with an application to poverty differences between countries. Empir. Econ0 30(2), 331–358 (2005)

    Article  Google Scholar 

  • Calvo, C., Dercon, S.: Vulnerability to individual and aggregate poverty. Soc. Choice Welf. 41(4), 721–740 (2013)

    Article  Google Scholar 

  • Celidoni, M.: Vulnerability to poverty: An empirical comparison of alternative measures. Appl. Econ. 45, 1493–1506 (2013)

    Article  Google Scholar 

  • Chaudhuri, S.: Assessing vulnerability to poverty: concepts empirical methods and illustrative examples. Columbia University, Mimeo (2003)

    Google Scholar 

  • Chaudhuri, S., Jalan, J., Suryahadi, A.: Assessing household vulnerability to poverty from cross-sectional data: A methodology and estimates from Indonesia. Discussion Paper Series 0102-52 Department of Economics. Columbia University, New York (2002)

    Google Scholar 

  • Christiaensen, L.J., Subbarao, K.: Towards an understanding of household vulnerability in rural Kenya. J. Afr. Econ. 14(4), 520–558 (2005)

    Article  Google Scholar 

  • Dutta, I., Foster, J., Mishra, A.: On measuring vulnerability to poverty. Soc. Choice Welf. 37(4), 743–761 (2011)

    Article  Google Scholar 

  • Egan, J.P.: Signal Detection Theory and ROC Analysis. Academic Press Series in Cognition and Perception Academic Press. NY, New York (1975)

    Google Scholar 

  • Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–121 (1996)

    Article  Google Scholar 

  • Feeny, S., McDonald, L.: Vulnerability to multidimensional poverty: Findings from households in Melanesia. J. Dev. Stud. 52(3), 447–464 (2016)

    Article  Google Scholar 

  • Frick, J.R., Jenkins, S.P., Lillard, D.R., Lipps, O., Wooden, M.: Die internationale Einbettung des Sozio-oekonomischen Panels (SOEP) im Rahmen des Cross-National Equivalent File (CNEF). Vierteljahrsh. Wirtschaftsforschung 77(3), 110–129 (2008)

    Article  Google Scholar 

  • Gaiha, R., Imai, K.: Measuring vulnerability and poverty: Estimates for rural India. Research Paper 2008/040 UNU-WIDER. Helsinki, Finland (2008)

    Google Scholar 

  • Günther, I., Harttgen, K.: Estimating households vulnerability to idiosyncratic and covariate shocks: A novel method applied in Madagascar. World Dev. 37(7), 1222–1234 (2009)

    Article  Google Scholar 

  • Hoddinott, J., Quisumbing, A.: Methods for microeconometric risk and vulnerability assessments. Social Protection Discussion Paper Series 0324 The World Bank. DC, Washington (2003)

    Google Scholar 

  • Jha, R., Dang, T.: Vulnerability to poverty in Papua New Guinea in 1996. Asian Econ. J. 24(3), 235–251 (2010)

    Article  Google Scholar 

  • Klasen, S., Lange, S.: How narrowly should anti-poverty programs be targeted? Simulation evidence from Bolivia and Indonesia. Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 213, Courant Research Centre PEG (2016)

  • Klasen, S., Waibel, H.: Vulnerability to poverty. Palgrave Macmillan, UK, London (2013)

    Book  Google Scholar 

  • Klein, N., Kneib, T., Lang, S., Sohn, A.: Bayesian structured additive distributional regression with an application to regional income inequality in Germany. Ann. Appl. Stat. 9(2), 1024–1052 (2015)

    Article  Google Scholar 

  • Krause, P., Ritz, D.: EU-Indikatoren zur sozialen Inklusion in Deutschland. Vierteljahrsh. Wirtschaftsforschung 75(1), 152–173 (2006)

    Article  Google Scholar 

  • Landau, K.: Messung der Vulnerabilität der Armut: Eine statistische Analyse mit deutschen Paneldaten Dissertation. Universität Göttingen, Göttingen (2012)

    Google Scholar 

  • Ligon, E., Schechter, L.: Measuring vulnerability. Econ. J. 113(486), C95–C102 (2003)

    Article  Google Scholar 

  • Ligon, E., Schechter, L.: Evaluating different approaches to estimating vulnerability. Social Protection Discussion Paper Series 0410 The World Bank. DC, Washington (2004)

    Google Scholar 

  • McCarthy, N., Brubaker, J., De La Fuente, A.: Vulnerability to poverty in rural Malawi. Policy Research Working Paper WPS7769 The World Bank. DC, Washington (2016)

    Google Scholar 

  • McDonald, J.B., Ransom, M.: The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality. In: Chotikapanich, D. (ed.) Modeling Income Distributions and Lorenz Curves, Economic Studies in Equality, Social Exclusion and Well-Being, vol. 5, pp 147–166. Springer, New York (2008)

  • Moser, C.O.: The asset vulnerability framework: Reassessing urban poverty reduction strategies. World Dev. 26(1), 1–19 (1998)

    Article  Google Scholar 

  • Novignon, J., Nonvignon, J., Mussa, R., Chiwaula, L.S.: Health and vulnerability to poverty in Ghana: evidence from the Ghana living standards survey round 5. Health Econ. Rev. 2, 11 (2012)

    Article  Google Scholar 

  • Pritchett, L., Suryahadi, A., Sumarto, S.: Quantifying vulnerability to poverty: A proposed measure, applied to Indonesia. Policy Research Working Paper WPS2437 The World Bank. DC, Washington (2000)

    Google Scholar 

  • Ravallion, M.: How relevant is targeting to the success of an antipoverty program? World Bank Res. Obs. 24(2), 205–231 (2009)

    Article  Google Scholar 

  • Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale and shape. J. Royal Stat Soc.: Ser. C (Appl. Stat.) 54(3), 507–554 (2005)

    Article  Google Scholar 

  • Selezneva, E., Van Kerm, P.: A distribution-sensitive examination of the gender wage gap in Germany. J. Econ. Inequal. 14(1), 21–40 (2016)

    Article  Google Scholar 

  • Skoufias, E., Quisumbing, A.R.: Consumption insurance and vulnerability to poverty: A synthesis of the evidence from Bangladesh, Ethiopia, Mali, Mexico and Russia. Eur. J. Dev. Res. 17(1), 24–58 (2005)

    Article  Google Scholar 

  • Sohn, A., Klein, N., Kneib, T.: A Semiparametric Analysis of Conditional Income Distributions. Schmollers Jahrbuch 135, Proceedings of the 11th International Socio-Economic Panel User Conference (SOEP 2014) (2015)

  • Stasinopoulos, D.M., Rigby, R.A.: Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23(7) (2007)

  • Stauder, J., Hüning, W.: Die Messung von Äquivalenzeinkommen und Armutsquoten auf der Basis des Mikrozensus. Statistische Analysen und Studien NRW 13 (2004)

  • Suryahadi, A., Sumarto, S.: Poverty and vulnerability in Indonesia before and after the economic crisis. Asian Econ. J. 17(1), 45–64 (2003)

    Article  Google Scholar 

  • Thi Nguyen, K.A., Jolly, C.M., Bui, C.T.P.N., Le, T.H.T.: Climate change, rural household food consumption and vulnerability: The case of Ben Tre province in Vietnam. Agric. Econ. Rev. 16(2), 95–109 (2015)

    Google Scholar 

  • Thompson, M.L., Zucchini, W.: On the statistical analysis of ROC curves. Stat. Med. 8(10), 1277–1290 (1989)

    Article  Google Scholar 

  • Zereyesus, Y.A., Embaye, W.T., Tsiboe, F., Amanor-Boadu, V.: Implications of non-farm work to vulnerability to food poverty-recent evidence from northern Ghana. World Dev. 91, 113–124 (2017)

    Article  Google Scholar 

  • Zhang, Y., Wan, G.: How precisely can we estimate vulnerability to poverty? Oxf. Dev. Stud. 37(3), 277–287 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees and Stephen Jenkins for helpful comments on earlier versions of this paper. We are grateful for funding from the Ministry of Science and Culture (Lower Saxony).

Author information

Authors and Affiliations

  1. Chair of Statistics, University of Goettingen, Humboldtallee 3, 37073, Goettingen, Germany

    Maike Hohberg, Katja Landau, Thomas Kneib & Walter Zucchini

  2. Chair of Development Economics, University of Goettingen, Platz der Goettinger Sieben 3, 37073, Goettingen, Germany

    Stephan Klasen

Authors
  1. Maike Hohberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Katja Landau
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Thomas Kneib
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Stephan Klasen
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Walter Zucchini
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Maike Hohberg.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hohberg, M., Landau, K., Kneib, T. et al. Vulnerability to poverty revisited: Flexible modeling and better predictive performance. J Econ Inequal 16, 439–454 (2018). https://doi.org/10.1007/s10888-017-9374-6

Download citation

  • Received: 14 November 2016

  • Accepted: 18 December 2017

  • Published: 03 February 2018

  • Issue Date: September 2018

  • DOI: https://doi.org/10.1007/s10888-017-9374-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Vulnerability to poverty
  • Distributional regression
  • Generalized additive model for location
  • Scale and shape
  • Receiver operating characteristic curve
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.