Skip to main content

Measuring income inequality using survey data: the case of China

Abstract

The purpose of this paper is to raise awareness of missing data when we evaluate income inequality using survey data. If the income data are not missing completely at random, the calculated income inequalities are more likely to be biased, which may lead to inappropriate conclusions and policy recommendations. To handle the missing data on income, a multiple imputation approach is utilized. In particular, we propose an extended approach to correct the possible sample selection bias in the imputation process. A case study using China’s household survey suggests that extended imputation corrects for biases effectively in the calculation of Gini coefficients and results in gains in efficiency as well.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abdelkrim, A., Duclos, J.-Y.: DASP: distributive analysis Stata package. PEP, World Bank, UNDP and University Laval

  2. 2.

    Cornia, G. A., Court, J.: Inequality, growth and poverty in the era of liberalization and globalization.UNU world institute for development economics research (2001)

  3. 3.

    Davey, A, Shanahan, M. J., Schafer, J. L.: Correcting for selective nonresponse in the national longitudinal survey of youth using multiple imputation. J. Hum. Resour. 36 (3), 500–519 (2001)

    Article  Google Scholar 

  4. 4.

    Esteban, J., Ray, D.: Linking conflict to inequality and polarization. Am. Econ. Rev. 101, 1345–1374 (2011)

    Article  Google Scholar 

  5. 5.

    Fajnzylber, P., Lederman, D., Loayza, N.: Inequality and violent crime. J. Law Econ. 45 (1), 1–40 (2002)

    Article  Google Scholar 

  6. 6.

    Frick, J. R., Grabka, M. M.: Missing income data in panel surveys: Incidence, imputation and its impact on the income distribution. Discussion papers, p 376 (2004)

  7. 7.

    He, Y.: Missing data analysis using multiple imputation: Getting to the Heart of the Matter. Circ. Cardiovasc. Qual. Outcomes 3 (1), 98–105 (2010)

    Article  Google Scholar 

  8. 8.

    Heckman, J. J.: Sample selection bias as a specification error. Econometrica 47 (1), 153–161 (1979)

    Article  Google Scholar 

  9. 9.

    Honaker, J., King, G.: What to do about missing values in time series cross-section data. Am. J. Polit. Sci. 54 (2), 561–581 (2010)

    Article  Google Scholar 

  10. 10.

    Horowitz, J. L., Manski, C. F.: Censoring outcomes and regressors due to survey nonresponse: identification and estimation using weights and imputations. J. Econo. 84, 37–58 (1998)

    Article  Google Scholar 

  11. 11.

    Knight, J., Song, L.: Increasing urban wage inequality in China: Extent, element and evaluation. Econ. Transit. 11 (4), 597–619 (2003)

    Article  Google Scholar 

  12. 12.

    Liu, H.: The China Health and Nutrition Survey: An important database for poverty and inequality research. J. Econ. Inequal. 6 (4), 373–376 (2008)

    Article  Google Scholar 

  13. 13.

    Ning, G.: Can educational expansion improve income inequality? Evidences from the CHNS 1997 and 2006 data. Econ. Syst. 34 (4), 397–412 (2010)

    Article  Google Scholar 

  14. 14.

    Royston, P., Carlin, J. B., White, I. R.: Multiple imputation of missing values: New features for mim. Stata J. 9 (2), 252–264 (2009)

    Google Scholar 

  15. 15.

    Rubin, D. B.: Multiple imputation in sample surveys — a phenomenological Bayesian approach to nonresponse. in proceedings of the section on survey research methods,American Statistical Association, pp 20–34 (1978)

  16. 16.

    Rubin, D. B.: Multiple imputation for nonresponse in surveys. Wiley, New York (1987)

    Book  Google Scholar 

  17. 17.

    Rubin, D. B.: Multiple imputation after 18 + years. J. Am. Stat. Assoc. 91 (434), 473–489 (1996)

    Article  Google Scholar 

  18. 18.

    Schafer, J. L.: Analysis of incomplete multivariate data.London:Chapman and Hall (1997)

  19. 19.

    Schenker, N., Raghunathan, T.E., Chiu, P.-L.,Makuc, D.M., Zhang, G., Cohen, A.J.:Multiple imputation of missing income data in the national health interview survey. J. Am. Stat. Assoc. 101(475), 924–933 (2006)

  20. 20.

    Thorbecke, E., Charumilind, C.: Economic inequality and its socioeconomic impact. World Dev. 30 (9), 1477–1495 (2002)

    Article  Google Scholar 

  21. 21.

    van Buuren, S., Boshuizen, H. C., Knook, D. L.: Multiple imputation of missing blood pressure covariates in survival analysis. Stat. Med. 18, 681–694 (1999)

    Article  Google Scholar 

  22. 22.

    Wan, G., Zhang, X.: Rising inequality in China. J. Comp. Econ. 34 (4), 651–653 (2006)

    Article  Google Scholar 

  23. 23.

    Yu, J., Zhu, G.: How uncertainty is household income in China? Economics Letters 120 (1), 74–78 (2013)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dahai Fu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, D. Measuring income inequality using survey data: the case of China. J Econ Inequal 13, 299–307 (2015). https://doi.org/10.1007/s10888-014-9283-x

Download citation

Keywords

  • Income inequality
  • Multiple imputation
  • Missing data
  • China