Skip to main content

Polarization measurement for ordinal data

An Erratum to this article was published on 30 June 2015


Atkinson’s Theorem (Atkinson J. Econ. Theory 2, 244–263, 1970) is a classic result in inequality measurement. It establishes Lorenz dominance as a useful criterion for comparative judgements of inequality between distributions. If distribution A Lorenz dominates distribution B, then all indices in a broad class of measures must confirm A as less unequal than B. Recent research, however, shows that standard inequality theory cannot be applied to ordinal data (Zheng Res. Econ. Inequal. 16, 177–188, 2008), such as self-reported health status or educational attainment. A new theory in development (Abul Naga and Yalcin J. Health Econ. 27(6), 1614–1625, 2008) measures disparity of ordinal data as polarization. Typically a criterion used to compare distributions is the polarization relation as proposed by Allison and Foster (J. Health Econ. 23(3), 505–524, 2004). We characterize classes of polarization measures equivalent to the AF relation analogously to Atkinson’s original approach.

This is a preview of subscription content, access via your institution.


  1. 1.

    Allison, R.A., Foster, J.E.: Measuring health inequality using qualitative data. J. Health Econ. 23 (3), 505–524 (2004)

    Article  Google Scholar 

  2. 2.

    Abul Naga, R.H., Yalcin, T.: Inequality measurement for ordered response health data. J. Health Econ. 27 (6), 1614–1625 (2008)

    Article  Google Scholar 

  3. 3.

    Abul Naga, R.H., Yalcin, T.: Median Independent Inequality Orderings, University of Aberdeen Business School working paper series Vol 3, pp. 1–25 (2010)

  4. 4.

    Apouey, B.: Measuring health polarization with self-assessed health data. Health Econ. 16 (9), 875–894 (2007)

    Article  Google Scholar 

  5. 5.

    Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)

    Article  Google Scholar 

  6. 6.

    Berry, K.J., Mielke, P.W.: Indices of ordinal variation. Percept. Mot. Skills 74, 576–578 (1992)

    Article  Google Scholar 

  7. 7.

    Blair, J., Lacy, M.G.: Statistics of ordinal variation. Sociol. Methods Res. 28 (251), 251–280 (2000)

    Article  Google Scholar 

  8. 8.

    Blackburn, M., Bloom, D.: What is happening to the middle class. Am. Demogr. 7 (1), 19–25 (1985)

    Google Scholar 

  9. 9.

    Dasgupta, P., Sen, A.K., Starret, D.: Notes on the measurement of inequality. J. Econ. Theory 6, 180–187 (1973)

    Article  Google Scholar 

  10. 10.

    Diener, E., Lucas, R.E.: Personality and subjective well-being. In: Kahneman, D., Diener, E., chwarz, N. (eds.) (1999)

  11. 11.

    Esteban, J., Ray, D.: On the measurement of polarization. Econometrica 62, 819–852 (1994)

    Article  Google Scholar 

  12. 12.

    Di Tella, R., McCulloch, R.: Some uses of happiness data in economics. J. Econ. Perspect. 20 (1), 25–46 (2006)

    Article  Google Scholar 

  13. 13.

    Esteban, J., Ray, D.: Comparing polarization measures. In: Garfinkel, M.R., Skaperdas, S. (eds.) The Oxford Handbook of the Economics of Peace and Conflict, Chapter 7. Oxford University Press, New York (2012)

    Google Scholar 

  14. 14.

    Foster, J., Wolfson, M.: Polarization and the decline of the middle class: Canada and the US. J. Econ. Inequal. 8(2), 247–273 (2010)

  15. 15.

    Frey, B.S., Stutzer, A.: Happiness and Economics. Princeton University Press, Princeton, NJ (2002)

    Google Scholar 

  16. 16.

    Hemming, R., Keen, M.J.: Single-crossing conditions in comparisons of tax progressivity. J. Publ. Econ. 20, 373–380 (1983)

    Article  Google Scholar 

  17. 17.

    Kahneman, D., Krueger, A.B.: Developments in the measurement of subjective wellbeing. J. Econ. Perspect. 22, 3–24 (2006)

    Article  Google Scholar 

  18. 18.

    Kobus, M., Miłoś, P.: Inequality decomposition by population subgroups for ordinal data. J. Health Econ. 31, 15–21 (2012)

    Article  Google Scholar 

  19. 19.

    Layard, R.: Happiness. Lessons from a New Science, London: Allen Lane (2005)

    Google Scholar 

  20. 20.

    Leik, R.K.: A measure of ordinal consensus. Pac. Sociol. Rev. 9, 85–90 (1966)

    Article  Google Scholar 

  21. 21.

    Levy, F., Murnane, R.J.: U.S. Earnings Levels and Earnings Inequality: A Review of Recent Trends and Proposed Explanations. J. Econ. Lit. 30 (3), 1333–1381 (1992)

    Google Scholar 

  22. 22.

    Oswald, A.J.: Happiness and economic performance. Econ. J. 107, 1815–1831 (1997)

    Article  Google Scholar 

  23. 23.

    Parker, D.S., Ram, P.: Greed and majorization, Tech. Report. Department of Computer Science, University of California, Los Angeles (1997)

    Google Scholar 

  24. 24.

    Shorrocks, A.F.: Inequality decomposition by population subgroups. Econometrica 52 (6), 1369–85 (1984)

    Article  Google Scholar 

  25. 25.

    Tsui, K.Y.: Multidimensional inequality and multidimensional generalized entropy measures: An axiomatic derivation. Soc. Choice Welf. 16 (1), 145–157 (1999)

    Article  Google Scholar 

  26. 26.

    Wang, Y.Q., Tsui, K.Y.: Polarization orderings and new classes of polarization indices. J. Publ. Econ. Theory 2, 349–363 (2000)

    Article  Google Scholar 

  27. 27.

    Wolfson, M.C.: When inequalities diverge. Am. Econ. Rev. P&P 94, 353–358 (1994)

    Google Scholar 

  28. 28.

    Wolfson, M.C.: Divergent inequalities: theory and empirical results. Rev. Income Wealth 43, 401–421 (1997)

    Article  Google Scholar 

  29. 29.

    Zheng, B.: A new approach to measure socioeconomic inequality in health. J. Econ. Inequal. 9, 555–577 (2011)

    Article  Google Scholar 

  30. 30.

    Zheng, B.: Measuring inequality with ordinal data: a note. Res. Econ. Inequal. 16, 177–188 (2008)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Martyna Kobus.

Additional information

The project was supported by National Science Centre in Poland and by a grant from the CERGE-EI Foundation under a program of the Global Development Network. All opinions expressed are those of the author and have not been endorsed by CERGE-EI or the GDN.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kobus, M. Polarization measurement for ordinal data. J Econ Inequal 13, 275–297 (2015).

Download citation


  • Polarization
  • Inequality measurement
  • Ordinal data
  • Atkinson’s Theorem
  • Dominance