Skip to main content

Multidimensional time and income poverty: well-being gap and minimum 2DGAP poverty intensity – German evidence

Abstract

This paper focuses on interdependent multidimensional poverty of time and income with its incidence and intensity. We introduce a Two Dimensional Minimum Poverty Gap (2DGAP) measure, which quantifies the shortest path to escape multidimensional poverty. The 2DGAP disentangles single poverty attribute gaps while assuring their interdependence; an important issue for targeted antipoverty policies. Besides income, we include genuine personal leisure time with social participation reflecting Sen’s capability approach. The interdependence of multidimensional poverty is estimated by a CES-type well-being function with individual German data. The empirical results of Germany’s “working poor” emphasize the importance of time with social participation aspects in the multidimensional poverty discussion.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Alkire, S., Foster, J.: Counting and multidimensional poverty measurement. J. Public. Econ. 95(7–8), 476–487 (2011)

    Article  Google Scholar 

  2. 2.

    Andreß, H.-J., Lohmann, H. (eds.): The Working Poor in Europe - Employment, Poverty and Globalization. Edward Elgar, Cheltenham (2008)

    Google Scholar 

  3. 3.

    Arrow, K.J., Chenery, H.B., Minhas, B.S., Solow, R.M.: Capital - labor substitution and economic efficiency. Rev. Econ. Statistics. 43, 225–250 (1961)

    Article  Google Scholar 

  4. 4.

    Atkinson, A.B.: Multidimensional depriviation: contrasting social welfare and counting approaches. J. Econ. Inequal. 1, 51–65 (2003)

    Article  Google Scholar 

  5. 5.

    Bardasi, E., Wodon, Q.: Measuring time poverty and analyzing its determinants: concept and application to Guinea. In: Blackden, C.M., Wodon, Q. (eds.) Gender, Time Use, and Poverty in Sub-Saharan Africa, World Bank Working Paper No. 73, pp. 84–91. The World Bank, Washington (2006)

    Google Scholar 

  6. 6.

    Becker, G.S.: A theory of the allocation of time. Econ. J. 75, 493–517 (1965)

    Article  Google Scholar 

  7. 7.

    Becker, I., Hauser, R.: Anatomie der Einkommensverteilung – Ergebnisse der Einkommens- und Verbrauchsstichproben 1969–1998, edition sigma. Berlin (2003)

  8. 8.

    Bittman, M.: Social Participation and Family Welfare: The Money and Time Cost of Leisure, SPRC Discussion Paper No. 95. Sydney (1999)

  9. 9.

    Bonke, J., Deding, M., Lausten, M.: Time and money - a simultaneous analysis of men’s and women’s domain satisfactions. J. Happiness Stud. 10, 113–131 (2009)

    Article  Google Scholar 

  10. 10.

    Bossert, W., Chakravarty, S.R., D’Ambrosio, C.: Multidimensional poverty and material deprivation with discrete data. Rev. Income Wealth 59(1), 29–43 (2013)

    Article  Google Scholar 

  11. 11.

    Bourguignon, F., Chakravarty, S.R.: The measurement of multidimensional poverty. J. Econ. Inequal. 1(1), 25–49 (2003)

    Article  Google Scholar 

  12. 12.

    Brandolini, A., D’Alessio, G.: Measuring Well-Being in the Functioning Space. Mimeo, Rome (1998)

    Google Scholar 

  13. 13.

    Bresson, F.: Multidimensional Poverty Measurement with the Weak Focus Axiom. University Nice Sophia Antipolis (2009)

  14. 14.

    Bundesregierung:Lebenslagen in Deutschland – Der zweite Armuts- und Reichtumsbericht der Bundesregierung, Berlin (2005)

  15. 15.

    Burchardt, T.: Time and Income Poverty. Centre for Analysis of Social Exclusion, CASEreport 57. London School of Economics, London (2008)

  16. 16.

    Calvo, C.: Vulnerability to multidimensional poverty: Peru, 1998-2002. World Dev. 36(6), 1011–1020 (2008)

    Article  Google Scholar 

  17. 17.

    Chakravarty, S.R.: Inequality, Polarization and Poverty. Advances in Distributional Analysis. Springer-Verlag New York, New York (2009)

    Book  Google Scholar 

  18. 18.

    Chakravarty, S.R., Muliere, P.: Welfare indicators. A review and new perspectives. METRON - Int. J. Statistics. LXII(2), 247–281 (2004)

    Google Scholar 

  19. 19.

    Chakravarty, S.R., Silber, J.: Measuring multidimensional poverty: the axiomatic approach. In: Kakwani, N., Silber, J. (eds.) Quantitative Approaches to Multidimensional Poverty Measurement, pp. 192–209. Palgrave Macmillan, New York (2008)

    Google Scholar 

  20. 20.

    Clark, A.E., Frijters, P., Shields, M.: Relative income, happiness and utility: an explanation for the easterlin paradox and other puzzles. J. Econ. Lit. 46, 95–144 (2008)

    Article  Google Scholar 

  21. 21.

    Deutsch, J., Silber, J.G.: Measuring multidimensional poverty: an empirical comparison of various approaches. Rev. Income Wealth 51(1), 145–174 (2005)

    Article  Google Scholar 

  22. 22.

    Ehling, M., Holz, E., Kahle, I.: Erhebungsdesign der Zeitbudgeterhebung 2001/2002. Wirtschaft und Statistik, 427–436 (2001)

  23. 23.

    Foster, J., Greer, J., Thorbecke, E.: A class of decomposable poverty measures. Econometrica 52(3), 761–766 (1984)

    Article  Google Scholar 

  24. 24.

    Frey, B.S., Stutzer, A.: Happiness research: state and prospects. Rev. Soc. Econ. LXII(2), 207–228 (2005)

    Article  Google Scholar 

  25. 25.

    Goebel, J., Grabka, M.M.: Zunehmende Einkommensungleichheit und wachsendes Armutsrisiko während des letzten Jahrzehnts. Ungleichheitsentwicklungen und Verteilungsspielräume. DIW Vierteljahreshefte zur Wirtschaftsforschung 80(4), 5–11 (2011)

    Article  Google Scholar 

  26. 26.

    Goodin, R., Rice, J., Parpo, A., Eriksson, L.: Discretionary Time: A New Measure of Freedom. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  27. 27.

    Hamermesh, D.S., Pfann, G.A.: The Economics of Time Use. North-Holland (2005)

  28. 28.

    Harvey, A.S., Mukhopadhyay, A.K.: When twenty-four hours is not enough: time poverty of working parents. Soc. Indic. Res. 82(1), 57–77 (2007)

    Article  Google Scholar 

  29. 29.

    Kakwani, N., Silber, J. (eds.): Quantitative Approaches to Multidimensional Poverty Measurement. Palgrave Macmillan, Houndmills. Basingstoke, Hampshire (2008)

  30. 30.

    Kmenta, J.: On estimation of the CES production function. Int. Econ. Rev. 8(2), 180–189 (1967)

    Article  Google Scholar 

  31. 31.

    Lugo, A., Maasoumi, E.: Multidimensional poverty measures from an information theory perspective, Paper prepared for the 30th General Conference of The International Association for Research in Income and Wealth, Portoroz, Slovenia, 24–30 August (2008)

  32. 32.

    Lugo, A., Maasoumi, E.: Multidimensional poverty measures from an information theory perspective, OPHI Working paper No. 10. Oxford Poverty & Human Development Initiative (2009)

  33. 33.

    Maasoumi, E., Lugo, A.: The information basis of multivariate poverty assessments. In: Kakwani, N., Silber, J. (eds.) Quantitative Approaches to Multidimensional Poverty Measurement, pp. 1–29. Palgrave Macmillan, New York (2008)

    Google Scholar 

  34. 34.

    Merz, J.: Time and economic well-being – a panelanalysis of desired vs. actual working hours. Rev. Income Wealth 48(3), 317–346 (2002)

    Article  Google Scholar 

  35. 35.

    Merz, J., Rathjen, T.: Time and Income poverty - An Interdependent Multidimensional Poverty Approach with German Time Use Diary Data, Forschungsinstitut Freie Berufe (FFB), Leuphana Universität Lüneburg, FFB-Discussion Paper No.79. Lüneburg (2009). Forthcoming. In: The Review of Income and Wealth (2014)

  36. 36.

    Merz, J., Rathjen, T.: Intensity of Time and Income Interdependent Multidimensional Poverty: Well-Being and Minimum 2DGAP – German Evidence, Forschungsinstitut Freie Berufe (FFB), Leuphana Universität Lüneburg, FFB-Discussion Paper No.92. Lüneburg (2011)

  37. 37.

    Nolan, B., Whelan, C.: On the multidimensionality of poverty and social exclusion. In: Jenkins, S.P., Micklewright, J. (eds.) Inequality and Poverty Re-examined, pp. 146–165. Oxford University Press, Oxford (2007)

    Google Scholar 

  38. 38.

    Osberg, L. (ed.): The Economic Implications of Social Cohesion. University of Toronto Press, Toronto (2003)

    Google Scholar 

  39. 39.

    Osberg, L., Xu, K.: On Sen’s approach to poverty measures and recent developments. China Econ. Q. (published in Chinese) 1(1), 151–170 (2002)

    Google Scholar 

  40. 40.

    Rhein, T.: “Working poor” in Deutschland und den USA - Arbeit und Armut im transatlantischen Vergleich, IAB Kurzbericht, Aktuelle Analysen und Kommentare aus dem Institut für Arbeitsmarkt- und Berufsforschung 1/2009. Nürnberg (2009)

  41. 41.

    Sen, A.K.: Poverty: an ordinal approach to measurement. Econometrica 44(2), 219–231 (1976)

    Article  Google Scholar 

  42. 42.

    Sen, A.K.: Commodities and Capabilities. North-Holland, Amsterdam (1985)

    Google Scholar 

  43. 43.

    Sen, A.K.: Development as Freedom. Knopf Publishers, New York (1999)

    Google Scholar 

  44. 44.

    Sen, A.K.: The economics of happiness and capability. In: Bruni, L., Comim, F., Pugno, M. (eds.) Capabilities & Happiness, pp. 16–27. Oxford University Press, Oxford (2008)

    Google Scholar 

  45. 45.

    Shorrocks, A.F.: Revisiting the Sen poverty Index. Econometrica 63, 1225–1230 (1997)

    Article  Google Scholar 

  46. 46.

    Thon, D.: A poverty measure. Indian Econ. J. 30, 55–70 (1983)

    Google Scholar 

  47. 47.

    Tsui, K.Y.: Multidimensional poverty indices. Soc. Choice Welf 19(1), 69–93 (2002)

    Article  Google Scholar 

  48. 48.

    Van Praag, B., Ferrer-i-Carbonell, A.: A multidimensional approach to subjective poverty. In: Bruni, L., Comim, F., Pugno, M. (eds.) Capabilities & Happiness, pp. 135–154. Oxford University Press, Oxford (2008)

    Google Scholar 

  49. 49.

    Vickery, C.: The time-poor: a new look at poverty. J. Hum. Resour. 12(1), 27–48 (1977)

    Article  Google Scholar 

  50. 50.

    Wagle, U.: Multidimensional Poverty Measurement – Conceps and Applications. Springer, New York (2008)

    Book  Google Scholar 

  51. 51.

    Wagner, G.G., Frick, J.R., Schupp, J.: The German Socio-Economic Panel Study (SOEP): scope, evolution and enhancements. J. Appl. Social Sci. Studies. 127(1), 139–179 (2007)

    Google Scholar 

  52. 52.

    Zacharias, A.: The Measurement of Time and Income Poverty, Levy Economics Institute of Bard College Working Paper No. 690. Amnandale-on-Hudson (2011)

  53. 53.

    Zheng, B.: Aggregate poverty measures. J. Econ. Surv. 11, 123–162 (1997)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joachim Merz.

Additional information

We would like to thank participants of the ECINEQ 2011 conference, the IARIW 2012 conference and the anonymous referees for helpful comments.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Merz, J., Rathjen, T. Multidimensional time and income poverty: well-being gap and minimum 2DGAP poverty intensity – German evidence. J Econ Inequal 12, 555–580 (2014). https://doi.org/10.1007/s10888-013-9271-6

Download citation

Keywords

  • Interdependent multidimensional time and income poverty
  • Genuine personal leisure time
  • Union and compensation approach
  • Minimum multidimensional poverty gap (2DGAP)
  • Extended economic well-being
  • Satisfaction/happiness
  • Working poor
  • CES well-being functon
  • German Socio-Economic Panel
  • German Time Use Survey 2001/02