Skip to main content

The 1913 paper of René Gâteaux, upon which the modern-day influence function is based

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Barrett, G.F., Donald, S.G.: Statistical inference with generalized Gini indices of inequality, poverty, and welfare. J. Bus. Econ. Stat. 27(1), 1–17 (2009)

    Article  Google Scholar 

  2. 2.

    Chernozhukov, V., Fernández-Val, I.,Melly, B.: Inference on counterfactual distributions. Econometrica 81(6), 2205–2268 (2013)

    Article  Google Scholar 

  3. 3.

    Cowell, F.A., Victoria-Feser, M.-P.: Robustness properties of inequality measures: the influence function and the principle of transfers. Econometrica 64, 77–101 (1996)

    Article  Google Scholar 

  4. 4.

    Essama-Nssah, B., Lambert, P.J.: Influence functions for policy impact analysis. Res. Econ. Inequal. 20, 135–159 (2012)

    Article  Google Scholar 

  5. 5.

    Essama-Nssah, B., Paul, S., Bassolé, L.: Accounting for heterogeneity in growth incidence in Cameroon using recentered influence function regression. J. Afr. Econ. (2013). doi:10.1093/jae/ejt009

    Google Scholar 

  6. 6.

    Firpo, S., Fortin, N.M., Lemieux, T.: Unconditional quantile regressions. Econometrica 77, 953–973 (2009)

    Article  Google Scholar 

  7. 7.

    Fortin, N.M., Lemieux, T., Firpo, S.: Decomposition methods in economics. In: Ashenfelter, O., Card, D. (eds.) Handbook of Labor Economics, vol. 4A, pp. 1–102. Amsterdam, North Holland (2010)

  8. 8.

    Gâteaux, R.: Sur les fonctionnelles continues et les fonctionnelles analytiques. Compt. Rendus Acad. Sci. Paris 157, 325–327 (1913)

    Google Scholar 

  9. 9.

    Gâteaux, R.: Sur diverses questions du calcul fonctionnel. B. Soc. Math. Fr. 50, 1–37 (1922)

    Google Scholar 

  10. 10.

    Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 60, 383–393 (1974)

    Article  Google Scholar 

  11. 11.

    Lévy, P.: Lecons D’Analyse Fonctionnelle. Gauthier-Villars, Paris (1922)

    Google Scholar 

  12. 12.

    Nashid, M.Z.: Differentiability and related properties of non-linear operators: some aspects of the role of differentials in nonlinear functional analysis. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp. 103–309. Academic Press, New York (1971)

  13. 13.

    Reid, N.: Influence functions. In: Kotz, S., Balakrishnan, N., Read, C.B., Vidakovic, B. (eds.) Encyclopedia of Statistical Sciences, 2nd edn., pp. 3495–3498. Wiley, Hoboken (2005)

  14. 14.

    Rothe, C.: Nonparametric estimation of distributional policy effects. J. Econometrics 155, 56–70 (2010)

    Article  Google Scholar 

  15. 15.

    Rothe, C.: Partial distributional policy effects. Econometrica 80, 2269–2301 (2012)

    Article  Google Scholar 

  16. 16.

    Tapia, R.A.: The differentiation and integration of non-linear operators. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp. 45–101. Academic Press, New York (1971)

  17. 17.

    Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Dover, New York (1959)

  18. 18.

    Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing, (3rd edn). Academic Press, New York (2012)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter J. Lambert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dugger, D., Lambert, P.J. The 1913 paper of René Gâteaux, upon which the modern-day influence function is based. J Econ Inequal 12, 149–152 (2014). https://doi.org/10.1007/s10888-013-9269-0

Download citation

Keywords

  • Gâteaux derivative
  • Influence function