Skip to main content

Poverty status probability: a new approach to measuring poverty and the progress of the poor

Abstract

Poverty measurement and the analysis of the progress (or otherwise) of the poor, whether it is societies, families or individuals, is beset with difficulties and controversies surrounding the definition of a poverty line or frontier. Here, borrowing ideas from the mixture model literature, a new approach to assigning poverty-non poverty status is proposed which avoids specifying a frontier, the price is that an agent’s poverty status is only determined to the extent of its chance of being poor. Invoking variants of Gibrat’s law to give structure to the distribution of outcomes for homogeneous subgroups of a population within the context of a finite mixture model of societal outcomes facilitates calculation of an agent’s poverty status probability. From this it is straightforward to calculate all the usual poverty measures as well as other characteristics of the poor and non poor subgroups in a society. These ideas are exemplified in a study of 47 countries in Africa over the recent quarter century which reveals among other things a growing poverty rate and a growing disparity between poor and non poor groups not identified by conventional methods.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aitkin, M., Wilson, G.T.: Mixture models, outliers, and the EM algorithm. Technometrics 22, 325–331 (1980)

    Article  Google Scholar 

  2. 2.

    Anderson, G.J., Linton, O., Wang, Y.: Nonparametric estimation and inference about the overlap of two distributions. J. Econ. 171, 1–23 (2012)

    Article  Google Scholar 

  3. 3.

    Anderson, G.J., Linton, O., Leo, T.: A polarization-cohesion perspective on cross country convergence. J. Econ. Growth 17, 49–69 (2012)

    Article  Google Scholar 

  4. 4.

    Atkinson, A.B.: On the measurement of poverty. Econometrica 55, 749–64 (1987)

    Article  Google Scholar 

  5. 5.

    Betti, G., Cheli, B., Lemmi, A., Verma, V.: On the construction of fuzzy measures for the analysis of poverty and social exclusion. Stat. Appl. 4, 77–97 (2006)

    Google Scholar 

  6. 6.

    Bourguignon, F., Chakravarty, S.R.: The measurement of multidimensional poverty. J. Econ. Inequal. 1, 25–49 (2003)

    Article  Google Scholar 

  7. 7.

    Bowman, A.W.: Density based tests of goodness-of-fit. J. Stat. Comput. Simul. 40, 1–13 (1992)

    Article  Google Scholar 

  8. 8.

    Cheli, B., Lemmi, A., Spera, C.: An E.M. algorithm for estimating mixtures of Dagum’s models. In: Dagum, C., Lemmi, A. (eds.) Income Distribution, Social Welfare, Inequality and Poverty, vol. VI. Researches on Income Inequality, Slotjee, D.J. (ed.), pp. 131–142. JAI Press, Greenwich (1995)

  9. 9.

    Citro, C.F., Michael, R.T.: Measuring Poverty: A New Approach. National Academy Press, Washington (1995)

    Google Scholar 

  10. 10.

    Davidson, R., Duclos, J.-Y.: Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 68, 1435–1464 (2000)

    Article  Google Scholar 

  11. 11.

    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via EM algorithm. J. Roy. Stat. Soc. B 69, 1–38 (1977)

    Google Scholar 

  12. 12.

    Duclos, J.-Y., Sahn, D., Younger, S.D.: Robust multidimensional poverty comparisons. Econ. J. 116, 943–968 (2006)

    Article  Google Scholar 

  13. 13.

    Durlauf, S., Johnson, P.A., Temple, J.: Growth econometrics. In: Aghion, P., Durlauf, S. (eds.) Handbook of Economic Growth, vol. 1B, chap. 8. North Holland, Amsterdam (2005)

    Google Scholar 

  14. 14.

    Fan, Y.: Testing the goodness of fit of a parametric density function by kernel method. Econ. Theor. 10, 316–356 (1994)

    Article  Google Scholar 

  15. 15.

    Fan, Y.: Bootstrapping a consistent non parametric goodness-of-fit test. Econ. Rev. 14, 367–82 (1995)

    Article  Google Scholar 

  16. 16.

    Fan, Y., Ullah, A.: On goodness-of-fit tests for weakly dependent processes using kernel method. J. Nonparametric Stat. 11, 337–360 (1999)

    Article  Google Scholar 

  17. 17.

    Ferreira, F., Ravallion, M.: Poverty and inequality: The global context. In: Salverda, W., Nolan, B., Smeeding, T. (eds.) The Oxford Handbook of Economic Inequality. Oxford University Press, Oxford (2009)

    Google Scholar 

  18. 18.

    Foster, J.E., Greer, J., Thorbecke, E.: A class of decomposable poverty measures. Econometrica 42, 761–766 (1984)

    Article  Google Scholar 

  19. 19.

    Foster, J.E., Shorrocks, A.F.: Poverty orderings. Econometrica 56, 173–177 (1988)

    Article  Google Scholar 

  20. 20.

    Gibrat, R.: Une Loi Des Repartitions Economiques: L’effet Proportionelle. Bulletin de Statistique General, France 19, 469 (1930)

    Google Scholar 

  21. 21.

    Gibrat, R.: Les Inegalites Economiques. Libraire du Recueil Sirey, Paris (1931)

    Google Scholar 

  22. 22.

    Grusky, D., Kanbur, R. (eds.): Poverty and Inequality. Stanford University Press, Stanford (2006)

    Google Scholar 

  23. 23.

    Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91, 401–407 (1996)

    Article  Google Scholar 

  24. 24.

    Kalecki, M.: On the Gibrat distribution. Econometrica 13, 161–170 (1945)

    Article  Google Scholar 

  25. 25.

    Kiefer, J., Wolfowitz, J.: Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann. Math. Stat. 27, 887–906 (1956)

    Article  Google Scholar 

  26. 26.

    Manski, C.F.: Partial Identification of Probability Distributions. Springer-Verlag, New York (2003)

    Google Scholar 

  27. 27.

    McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  Google Scholar 

  28. 28.

    Pittau, M.G., Zelli, R., Johnson, P.A.: Mixture models, convergence clubs and polarization. Rev. Income Wealth 56, 102–122 (2010)

    Article  Google Scholar 

  29. 29.

    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org (2010)

  30. 30.

    Ravallion, M.: Poverty lines. In: Blume, L., Durlauf, S. (eds.) The New Palgrave Dictionary of Economics, 2nd edn. Palgrave Macmillan, London (2008)

    Google Scholar 

  31. 31.

    Ravallion, M.: Why don’t we see poverty convergence? Am. Econ. Rev. 102(1), 504–523 (2012)

    Article  Google Scholar 

  32. 32.

    Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the EM algorithm. SIAM Rev. 26, 195–239 (1984)

    Article  Google Scholar 

  33. 33.

    Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with unknown number of components. J. Roy. Stat. Soc. B 731–792 (1997)

  34. 34.

    Rodgers, J.R., Rodgers, J.L.: Chronic poverty in the United States. J. Hum. Resour. XXVIII, 25–54 (1993)

    Article  Google Scholar 

  35. 35.

    Sala-i-Martin, X.: The world distribution of income: Falling poverty and...convergence, period. Q. J. Econ. 121, 351–397 (2006)

    Article  Google Scholar 

  36. 36.

    Sen, A.K.: Poor relatively speaking. Oxf. Econ. Pap. 35, 153–169 (1983)

    Google Scholar 

  37. 37.

    Sen, A.K.: Inequality Reexamined. Oxford University Press, Oxford (1992)

    Google Scholar 

  38. 38.

    Sen, A.K.: On Economic Inequality. Oxford University Press, Oxford (1997)

    Google Scholar 

  39. 39.

    Slesnick, D.J.: Gaining ground: poverty in the postwar United States. J. Pol. Econ. 101, 1–38 (1993)

    Article  Google Scholar 

  40. 40.

    Sutton, J.: Gibrat’s legacy. J. Econ. Lit. 35, 40–59 (1997)

    Google Scholar 

  41. 41.

    Townsend: A sociological approach to the measurement of poverty—A rejoinder to Professor Amartya Sen. Oxf. Econ. Pap. 37, 659–668 (1985)

    Google Scholar 

  42. 42.

    World Bank: Africa Development Indicators. World Bank Group (2010)

  43. 43.

    Yitzhaki, S.: Economic distance and overlapping of distributions. J. Econ. 61, 147–159 (1994)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gordon Anderson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anderson, G., Pittau, M.G. & Zelli, R. Poverty status probability: a new approach to measuring poverty and the progress of the poor. J Econ Inequal 12, 469–488 (2014). https://doi.org/10.1007/s10888-013-9264-5

Download citation

Keywords

  • Poverty frontiers
  • Mixture models
  • Gibrat’s law

JEL Classifications

  • C14
  • I32
  • O1