Skip to main content

Statistical inference for vector measures of inequality and poverty

Abstract

In this paper, we consider methods of inference for vector measures of inequality and poverty. These vector measures may consist of several different scalar measures of inequality or poverty in a single dimension, several scalar measures of poverty which use different poverty lines, or several scalar measures of inequality or poverty in different dimensions. Our proposed methods are illustrated with a Monte Carlo simulation and two empirical examples utilizing Canadian household data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Atkinson, A.B.: Multidimensional deprivation: contrasting social welfare and counting approaches. J. Econ. Inequal. 1, 51–65 (2003)

    Article  Google Scholar 

  2. 2.

    Bourguignon, F., Chakravarty, S.R.: The measurement of multidimensional poverty. J. Econ. Inequal. 1, 25–49 (2003)

    Article  Google Scholar 

  3. 3.

    Chiu, W.H.: Intersecting Lorenz curves, the degree of downside inequality aversion, and tax reforms. Soc. Choice Welf. 28, 375–399 (2007)

    Article  Google Scholar 

  4. 4.

    Cowell, F.A.: Measuring Inequality. Phillip Allan, Oxford (1977)

    Google Scholar 

  5. 5.

    Cowell, F.A.: Sampling variance and decomposable inequality measures. J. Econom. 42, 27–41 (1989)

    Article  Google Scholar 

  6. 6.

    Cowell, F.A.: Measurement of inequality. In: Atkinson, A.B., Bourguignon, F. (eds.) Handbook of Income Distribution, vol. 1, pp. 87–166. North Holland, Amsterdam (2000)

    Google Scholar 

  7. 7.

    Cowell, F.A., Flachaire, E.: Income distribution and inequality measurement: the problem of extreme values. J. Econom. 141, 1044–1072 (2008)

    Article  Google Scholar 

  8. 8.

    Davidson, R., Duclos, J.Y.: Statistical inference for stochastic dominance and the measurement of poverty and inequality. Econometrica 68, 1435–1464 (2000)

    Article  Google Scholar 

  9. 9.

    Davidson, R., Flachaire, E.: Asymptotic and bootstrap inference for inequality and poverty measures. J. Econom. 141, 141–166 (2007)

    Article  Google Scholar 

  10. 10.

    Fisher, G., Wilson, D., Xu, K.: An empirical analysis of term premiums using significance tests for stochastic dominance. Econ. Lett. 60, 195–203 (1998)

    Article  Google Scholar 

  11. 11.

    Foster, J., Greer, J., Thorbecke, E.: A class of decomposable poverty measures. Econometrica 52, 761–766 (1984)

    Article  Google Scholar 

  12. 12.

    Foster, J.E.: On economic poverty: a survey of aggregate measures. In: Basmann, R., Rhodes, G. (eds.) Advances in Econometrics, vol. 3, pp. 215–251. JAI, Greenwich (1984)

    Google Scholar 

  13. 13.

    Kodde, D.A., Palm, F.C.: Wald criteria for jointly testing equality and inequality restrictions. Econometrica 54, 1243–1248 (1986)

    Article  Google Scholar 

  14. 14.

    Li, Q., Racine, J.S.: Nonparametric Econometrics: Theory and Practice. Princeton University Press, Princeton (2007)

    Google Scholar 

  15. 15.

    Maasoumi, E.: The measurement and decomposition of multi-dimensional inequality. Econometrica 54, 991–997 (1986)

    Article  Google Scholar 

  16. 16.

    Tsui, K.: Multidimensional poverty indices. Soc. Choice Welf. 19, 69–93 (2002)

    Article  Google Scholar 

  17. 17.

    Wolak, F.A.: Testing inequality constraints in linear econometric models. J. Econom. 41, 205–235 (1989)

    Article  Google Scholar 

  18. 18.

    Wu, X.: Intensive and Extensive Poverty: A Multidimensional Formulation. Mimeo, Department of Agricultural Economics, Texas A & M University (2006)

  19. 19.

    Zheng, B.: Aggregate poverty measures. J. Econ. Surv. 11, 123–162 (1997)

    Google Scholar 

  20. 20.

    Zheng, B.: Statistical inference for poverty measures with relative poverty lines. J. Econom. 101, 337–356 (2001)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brennan Scott Thompson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, B.S. Statistical inference for vector measures of inequality and poverty. J Econ Inequal 8, 451–462 (2010). https://doi.org/10.1007/s10888-009-9116-5

Download citation

Keywords

  • Inequality
  • Multidimensional welfare
  • Poverty