Skip to main content

An extended Gini approach to inequality measurement

Abstract

It is well-known that, when the Lorenz curves do not cross, the ranking of distributions provided by the Gini index is identical to the one implied by the Lorenz criterion. This does not preclude inequality as measured by the Gini index to increase while the Lorenz curves cross. A suitable modification of the Gini coefficient allows the Lorenz quasi-ordering to coincide with the ranking generated by the application of unanimity over the class of extended Gini indices. Recently the Lorenz quasi-ordering and the underlying principle of transfers have come under attack, while new criteria – the differentials, deprivation and satisfaction quasi-orderings – have been proposed for providing unambiguous rankings of distributions. We suggest to weaken the principle of transfers by imposing additional restrictions on the progressive transfers, which take into account the positions on the income scale of the donors and beneficiaries. We identify the subclasses of extended Gini indices that satisfy these weaker versions of the principle of transfers and we show that the application of unanimity among these classes generate rankings of distributions that coincide with those implied by the differentials, deprivation and satisfaction quasi-orderings.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aaberge, R.: The meaning and measurement of duration dependence in hazard rate models. Discussion Paper, No. 319, Statistics Norway (2002)

  2. 2.

    Amiel, Y., Cowell, F.A.: Measurement of income inequality: experimental test by questionnaire. J. Public Econ. 47, 3–26 (1992)

    Article  Google Scholar 

  3. 3.

    Amiel, Y., Cowell, F.A.: Thinking about Inequality. Cambridge University Press, Cambridge, UK (1999)

    Google Scholar 

  4. 4.

    Amiel, Y., Cowell, F.A., Slottje, D.: Why do people violate the transfers principle? Evidence from educational sample surveys. Res. Econ. Inequal. 11, 1–16 (2004)

    Google Scholar 

  5. 5.

    Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)

    Article  Google Scholar 

  6. 6.

    Berge, C.: Espaces Topologiques. Fonctions Multivoques, 2nd edn. Dunod, Paris (1966)

    Google Scholar 

  7. 7.

    Bickel, P.J., Lehmann, E.L.: Descriptive statistics for non-parametric model III. Dispersion. Ann. Stat. 4, 1139–1158 (1976)

    Google Scholar 

  8. 8.

    Blackorby, C., Bossert, W., Donaldson, D.: Income inequality measurement: the normative approach. In: Silber, J. (ed.) Handbook of Income Inequality Measurement, pp. 133–157. Kluwer, Dordrecht, The Netherlands (1999)

    Google Scholar 

  9. 9.

    Bossert, W., Pfingsten, A.: Intermediate inequality: concepts, indices and welfare implications. Math. Soc. Sci. 19, 117–134 (1990)

    Article  Google Scholar 

  10. 10.

    Chakravarty, S.R.: Relative deprivation and satisfaction orderings. Keio Econ. Stud. 34, 17–32 (1997)

    Google Scholar 

  11. 11.

    Chakravarty, S.R., d’Ambrosio, C., Muliere, P.: Target shortfall orderings and indices. DIW Working Paper, No. 340, Berlin (2003)

  12. 12.

    Chakravarty, S.R., Chattopadhyay, N., Majumder, A.: Income inequality and relative deprivation. Keio Econ. Stud. 32, 1–15 (1995)

    Google Scholar 

  13. 13.

    Chakravarty, S.R., Moyes, P.: Individual welfare, social deprivation and income taxation. Econ. Theory 21, 843–869 (2003)

    Article  Google Scholar 

  14. 14.

    Chakravarty, S.R. and Mukherjee, D.: Measures of deprivation and their meaning in term of social satisfaction. Theory and Decision. 47, 88–100 (1999)

    Article  Google Scholar 

  15. 15.

    Chateauneuf, A., Moyes, P.: Does the Lorenz curve really measure inequality? GRAPE Discussion Paper, Université Montesquieu Bordeaux IV, France (2005)

  16. 16.

    Chateauneuf, A., Wilthien, P.-H.: Third inverse stochastic dominance, Lorenz curves and favourable double-transfers, CERMSEM Discussion Paper, Université Paris I Panthéon-Sorbonne (1999)

  17. 17.

    Cowell, F.A., Ebert, U.: Complaints and inequality. Soc. Choice Welf. 23, 71–90 (2004)

    Article  Google Scholar 

  18. 18.

    Dalton, H.: The measurement of the inequality of incomes. Econ. J. 30, 348–361 (1920)

    Article  Google Scholar 

  19. 19.

    Dasgupta, P., Sen, A.K., Starrett, D.: Notes on the measurement of inequality. J. Econ. Theory 22, 67–86 (1973)

    Google Scholar 

  20. 20.

    Donaldson, D., Weymark, J.A.: A single-parameter generalization of the Gini indices of inequality. J. Econ. Theory 6, 180–187 (1980)

    Google Scholar 

  21. 21.

    Ebert, U.: Measurement of inequality: an attempt at unification and generalization. Soc. Choice Welf. 5, 59–81 (1988)

    Article  Google Scholar 

  22. 22.

    Ebert, U., Moyes, P.: An axiomatic characterization of the Yitzhaki’s index of individual deprivation. Econ. Lett. 68, 263–270 (2000)

    Article  Google Scholar 

  23. 23.

    Fei, J.C.H.: Equity oriented fiscal programs. Econometrica 49, 869–881 (1980)

    Article  Google Scholar 

  24. 24.

    Fields, G.S., Fei, J.C.H.: On inequality comparisons. Econometrica 46, 305–316 (1978)

    Article  Google Scholar 

  25. 25.

    Foster, J.E.: Inequality measurement. In: Young, H.P. (ed.) Fair Allocation. In: American Mathematical Society Proceedings of Applied Mathematics, vol. 33, pp. 38–61 (1985)

  26. 26.

    Gaertner, W., Namezie, C.: Income inequality, risk, and the transfer principle: A questionnaire–experimental investigation. Math. Soc. Sci. 45, 229–245 (2003)

    Article  Google Scholar 

  27. 27.

    Gastwirth, J.L.: A general definition of the Lorenz curve. Econometrica 39, 1037–1039 (1971)

    Article  Google Scholar 

  28. 28.

    Gini, C.: On the measurement of concentration and variability of characters. Metron 63, 3–38 (2005)

    Google Scholar 

  29. 29.

    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge, UK (1952)

    Google Scholar 

  30. 30.

    Harrison, E., Seidl, C.: Perceptional inequality and preference judgements: an empirical examination of distributional axioms. Public Choice 79, 61–81 (1994)

    Article  Google Scholar 

  31. 31.

    Jakobsson, U.: On the measurement of the degree of progression. J. Public Econ. 5, 161–168 (1976)

    Article  Google Scholar 

  32. 32.

    Jewitt, I.: Choosing between risky prospects: the characterization of comparative statics results and location independent risk. Manag. Sci. 35, 60–70 (1989)

    Article  Google Scholar 

  33. 33.

    Kakwani, N.C.: On a class of poverty measures. Econometrica 48, 437–446 (1980)

    Article  Google Scholar 

  34. 34.

    Kakwani, N.C.: The relative deprivation curve and its applications. J. Bus. Econ. Stat. 2, 384–405 (1984)

    Article  Google Scholar 

  35. 35.

    Kolm, S-.C.: The optimal production of social justice. In: Margolis, J., Guitton, H. (eds.) Public Economics, pp. 145–200. Macmillan, London (1969)

    Google Scholar 

  36. 36.

    Kolm, S-.C.: Unequal inequalities I. J. Econ. Theory 12, 416–442 (1976)

    Article  Google Scholar 

  37. 37.

    Landsberger, M., Meilijson, I.: A tale of two tails: an alternative characterization of comparative risk. J. Risk Uncertain. 3, 65–82 (1990)

    Article  Google Scholar 

  38. 38.

    Magdalou, B.: A Theoretical and Experimental Contribution to the Measurement of Inequality (in French). Doctoral Dissertation, Université Montpellier I (2006)

  39. 39.

    Magdalou, B., Moyes, P.: Deprivation, welfare and inequality. GRAPE Discussion Paper, Université Montesquieu Bordeaux IV (2006)

  40. 40.

    Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic, New York (1979)

    Google Scholar 

  41. 41.

    Marshall, A.W., Olkin, I., Proschan, F.: Monotonicity of ratios of means and other applications of majorization. In: Shisha, O. (ed.) Inequalities, pp. 177–190. Academic, New York (1967)

    Google Scholar 

  42. 42.

    Mosler, K. and Muliere, P.: Inequality indices and the starshaped principle of transfers. Stat. Pap. 37, 343–364 (1996)

    Article  Google Scholar 

  43. 43.

    Moyes, P.: A note on minimally progressive taxation and absolute income inequality. Soc. Choice Welf. 5, 227–234 (1988)

    Article  Google Scholar 

  44. 44.

    Moyes, P.: Inequality reducing and inequality preserving transformations of incomes: symmetric and individualistic transformations. J. Econ. Theory 63, 271–298 (1994)

    Article  Google Scholar 

  45. 45.

    Preston, I.: Ratios, differences and inequality indices. Institute for Fiscal Studies Working Paper No. W90–9 (1990)

  46. 46.

    Quiggin, J.: Generalized Expected Utility Theory. The Rank-dependent Model. Kluwer, Boston, MA (1993)

    Google Scholar 

  47. 47.

    Runciman, W.G.: Relative Deprivation and Social Justice. Routledge and Kegan Paul, London (1966)

    Google Scholar 

  48. 48.

    Sen, A.K.: On Economic Inequality. Clarendon, Oxford (1973)

    Google Scholar 

  49. 49.

    Thon, D.: Redistributive properties of progressive taxation. Math. Soc. Sci. 14, 185–191 (1987)

    Article  Google Scholar 

  50. 50.

    Weiss, Y., Fershtman, C.: Social status and economic performance: a survey. Eur. Econ. Rev. 42, 801–820 (1998)

    Article  Google Scholar 

  51. 51.

    Weymark, J.A.: Generalized Gini inequality indices. Math. Soc. Sci. 1, 409–430 (1981)

    Article  Google Scholar 

  52. 52.

    Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 99–115 (1987)

    Article  Google Scholar 

  53. 53.

    Yaari, M.E.: A controversial proposal concerning inequality measurement. J. Econ. Theory 44, 381–397 (1988)

    Article  Google Scholar 

  54. 54.

    Yitzhaki, S.: Relative deprivation and the Gini coefficient. Q. J. Econ. 93, 321–324 (1979)

    Article  Google Scholar 

  55. 55.

    Yitzhaki, S.: On an extension of the Gini inequality index. Int. Econ. Rev. 24, 615–628 (1983)

    Article  Google Scholar 

  56. 56.

    Zoli, C.: Inverse stochastic dominance, inequality measurement and Gini indices. In: Moyes, P., Seidl, C., Shorrocks, A.F. (eds). Inequalities: Theory, Experiments and Applications. Journal of Economics, vol. 9 (Suppl.), pp. 119–161 (2002)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick Moyes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moyes, P. An extended Gini approach to inequality measurement. J Econ Inequal 5, 279–303 (2007). https://doi.org/10.1007/s10888-006-9051-7

Download citation

Key words

  • progressive transfers
  • income differentials
  • deprivation
  • satisfaction
  • Lorenz dominance
  • extended Gini social evaluation functions

JEL Classifications

  • D31
  • D63