Skip to main content

Gini’s nuclear family

Abstract

The purpose of this paper is to justify the use of the Gini coefficient and two close relatives for summarizing the basic information of inequality in distributions of income. To this end we employ a specific transformation of the Lorenz curve, the scaled conditional mean curve, rather than the Lorenz curve as the basic formal representation of inequality in distributions of income. The scaled conditional mean curve is shown to possess several attractive properties as an alternative interpretation of the information content of the Lorenz curve and furthermore proves to yield essential information on polarization in the population. The paper also provides asymptotic distribution results for the empirical scaled conditional mean curve and the related family of empirical measures of inequality.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aaberge, R.: Om måling av ulikskap, Rapporter 82/9, Statistisk sentralbyrå (In Norwegian) (1982)

  2. 2.

    Aaberge, R.: Characterizations of Lorenz curves and income distributions. Soc. Choice Welf. 17, 639–653 (2000)

    Article  Google Scholar 

  3. 3.

    Aaberge, R.: Axiomatic characterization of the Gini coefficient and Lorenz curve orderings. J. Econ. Theory 101, 115–132 (2001)

    Article  Google Scholar 

  4. 4.

    Aaberge, R.: Ranking Intersecting Lorenz Curves, CEIS Tor Vergata Research Paper Series, Discussion Paper No. 45 (2004)

  5. 5.

    Aaberge, R.: Asymptotic distribution theory of empirical rank-dependent measures of inequality. In: V. Nair (ed.), Advances in Statistical Modeling and Inference – Essays in Honor of Kjell A. Doksum, World Scientific, 2006 (2006)

  6. 6.

    Aaberge, R., Colombino, U., Strøm, S.: Do more equal slices shrink the cake?: An empirical evaluation of tax-transfer reform proposals in Italy. J. Popul. Econ. 17, 767–785 (2004)

    Article  Google Scholar 

  7. 7.

    An, M.Y.: Logconcavity versus logconvexity: a complete characterization. J. Econ. Theory 80, 350–369 (1998)

    Article  Google Scholar 

  8. 8.

    Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)

    Article  Google Scholar 

  9. 9.

    Atkinson, A.B., Bourguignon, F.: The design of direct taxation and family benefits. J. Public Econ. 41, 3–29 (1989)

    Article  Google Scholar 

  10. 10.

    Ben Porath, E., Gilboa, I.: Linear measures, the Gini index, and the income-equality trade-off. J. Econ. Theory 64, 443–467 (1994)

    Article  Google Scholar 

  11. 11.

    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    Google Scholar 

  12. 12.

    Bonferroni, C.: Elementi di Statistica Generale. Seeber, Firenze (1930)

    Google Scholar 

  13. 13.

    Bossert, W.: An approximation of the single-series Ginis. J. Econ. Theory 50, 82–92 (1990)

    Article  Google Scholar 

  14. 14.

    Caplin, A., Nalebuff, B.: Aggregation and social choice: a mean voter theorem. Econometrica 59, 1–23 (1991)

    Article  Google Scholar 

  15. 15.

    Chakravarty, S.R., Muliere, P.: Welfare indicators: a review and new perspectives. Metron 61, 1–41 (2003)

    Google Scholar 

  16. 16.

    Chotikapanich, D., Griffiths, W.: On calculation of the extended Gini coefficient. Rev. Income Wealth, 47, 541–547 (2001)

    Article  Google Scholar 

  17. 17.

    D’Addario, R.: Curve di Concentrazione, Elasticitá, Flessibilitá, Densitá Media e Densitá Marginale dei Redditi. Cressati, Bari (1936)

    Google Scholar 

  18. 18.

    Donaldson, D., Weymark, J.A.: A single parameter generalization of the Gini indices of inequality. J. Econ. Theory 22, 67–86 (1980)

    Article  Google Scholar 

  19. 19.

    Donaldson, D., Weymark, J.A.: Ethically flexible indices for income distributions in the continuum. J. Econ. Theory 29, 353–358 (1983)

    Article  Google Scholar 

  20. 20.

    Eltetö, Ö., Frigyes, E.: New inequality measures as efficient tools for causal analysis and planning. Econometrica 36, 383–396 (1968)

    Article  Google Scholar 

  21. 21.

    Esteban, J.M., Ray, D.: On the measurement of polarization. Econometrica 62, 819–851 (1994)

    Article  Google Scholar 

  22. 22.

    Fields, G.E., Fei, J.C.H.: On inequality comparisons. Econometrica 46, 303–316 (1978)

    Article  Google Scholar 

  23. 23.

    Fjærli, E., Aaberge R.: Tax reforms, dividend policy and trends in income inequality: empirical evidence based on Norwegian data, Discussion Paper No. 284, Statistics Norway (2000)

  24. 24.

    Giorgi, G.M.: A methodological survey of recent studies for the measurement of inequality of economic welfare carried out by some Italian statisticians. Econ. Notes 13, 145–157 (1984)

    Google Scholar 

  25. 25.

    Giorgi, G.M.: Bibliographic portrait of the Gini concentration ratio. Metron 48, 183–221 (1990)

    Google Scholar 

  26. 26.

    Giorgi, G.M.: Concentration index, Bonferroni; in Encyclopedia of Statistical Sciences. Update 2, 141–146 (1998)

  27. 27.

    Goldie, C.M.: Convergence theorems for empirical Lorenz curves and their inverses. Adv. Appl. Probab. 9, 765–791 (1977)

    Article  Google Scholar 

  28. 28.

    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge, UK (1934)

    Google Scholar 

  29. 29.

    Heckman, J.J., Honoré, B.: The empirical content of the Roy model. Econometrica 58, 1121–1150 (1990)

    Article  Google Scholar 

  30. 30.

    Hey, J.D., Lambert, P.J.: Relative deprivation and the Gini coefficient: comment. Q. J. Econ. 94, 567–573 (1980)

    Article  Google Scholar 

  31. 31.

    Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325 (1948)

    Google Scholar 

  32. 32.

    Kolm, S.C.: The optimal production of social justice. In: Margolis, J., Guitton, H. (eds.) Public Economics. Macmillan, New York/London (1969)

    Google Scholar 

  33. 33.

    Kolm, S.C.: Unequal inequalities I. J. Econ. Theory 12, 416–442 (1976)

    Article  Google Scholar 

  34. 34.

    Kolm, S.C.: Unequal inequalities II. J. Econ. Theory 13, 82–111 (1976)

    Article  Google Scholar 

  35. 35.

    Mehran, F.: Linear measures of inequality. Econometrica 44, 805–809 (1976)

    Article  Google Scholar 

  36. 36.

    Nygård, F., Sandström A.: Measuring Income Inequality. Almqvist and Wiksell International, Stockholm (1981)

    Google Scholar 

  37. 37.

    Rothschild, M., Stiglitz, J.E.: Increasing risk: a definition. J. Econ. Theory 2, 225–243 (1970)

    Article  Google Scholar 

  38. 38.

    Sen, A.: Informational bases of alternative welfare approaches. J. Public Econ. 3, 387–403 (1974)

    Article  Google Scholar 

  39. 39.

    Weymark, J.: Generalized Gini inequality indices. Math. Soc. Sci. 1, 409–430 (1981)

    Article  Google Scholar 

  40. 40.

    Wolfson, M.: When inequalities diverge. Am. Econ. Rev. 84, 353–358 (1994)

    Google Scholar 

  41. 41.

    Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)

    Article  Google Scholar 

  42. 42.

    Yaari, M.E.: A controversial proposal concerning inequality measurement. J. Econ. Theory 44, 381–397 (1988)

    Article  Google Scholar 

  43. 43.

    Yitzhaki, S.: On an extension of the Gini inequality index. Int. Econ. Rev. 24, 617–628 (1983)

    Article  Google Scholar 

  44. 44.

    Zoli, C.: Intersecting generalized Lorenz curves and the Gini index. Soc. Choice Welf. 16, 183–196 (1999)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rolf Aaberge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aaberge, R. Gini’s nuclear family. J Econ Inequal 5, 305–322 (2007). https://doi.org/10.1007/s10888-006-9050-8

Download citation

Key words

  • the scaled conditional mean curve
  • measures of inequality
  • the Gini coefficient
  • the Bonferroni coefficient
  • measures of social welfare
  • principles of transfer sensitivity
  • estimation
  • asymptotic distributions

JEL Classifications

  • D3
  • D63