Skip to main content
Log in

Private equity and growth

  • Published:
Journal of Economic Growth Aims and scope Submit manuscript

Abstract

We study private equity in a dynamic general equilibrium model and ask two questions: (i) Why does the investment of venture funds respond more strongly to the business cycle than that of buyout funds? (ii) Why are venture fund returns higher than those of buyout? On (i), venture brings in new capital whereas buyout largely reorganizes existing capital; this can explain the stronger co-movement of venture with aggregate Tobin’s Q. On (ii), the cost of reorganized capital has been high compared to new capital. Our model embodies this logic and fits the data on investment and returns well. At the estimated parameters, the two PE sectors together contribute between 7 and 11% of observed growth relative to the extreme case where private equity is absent. Using an alternative plausible measure of PE excess returns in the literature, this contribution could be as low as 5.8–9.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. According to estimates from Thomson Reuters and the Bureau of Economic Analysis (BEA).

  2. Annual estimates of monies placed with U.S. venture and buyout funds are from the Thomson One VentureXpert database. Private domestic investment is from the BEA, and estimates of aggregate Q are constructed from Hall (2001), Abel and Eberly (2011), and the Federal Reserve Board’s Flow of Funds Accounts. See “Appendix A” for detailed descriptions of all data and methods used in our analysis.

  3. Annual estimates of returns to U.S. venture and buyout fund investments are from Cambridge Associates, and real returns on the S&P 500 are from Damodaran (2017), deflated with the CPI. See “Appendix A” for details.

  4. Not pictured is the relation between returns and investment, but Kaplan and Stromberg (2009, Table 3, panel B) find that private equity commitments rise as a function of returns realized over the previous year, and this occurs in our model as well.

  5. The typical fund lasts 10–12 years but our data will allow us to infer the year-to-year returns.

  6. For VC funds Jovanovic and Szentes (2013) obtain this outcome if VCs are scarce relative to founders of new firms.

  7. Similarly, Korteweg and Sorensen (2010) find positive abnormal round-to-round returns from start-up VC investment. We therefore adjust PE returns for early versus later-stage funds when estimating the model in Sect. 4.2.

  8. This difference is reflected in the RHS of Eqs. (6) and (12). Depending on the funding terms, transaction fees for BO funds range from 1.68 to 3.37 cents per dollar of committed capital (Metrick & Yasuda, 2010).

  9. When \(G^{\text{v}}\left( \varepsilon \right) \) is Pareto, as in Eq. (26) with \(\rho >1\), this means that \(n_{\text{v}}=\lambda \varepsilon _{v,0}^{\rho }\varepsilon _{\text{v}}^{-\rho }\) \(\Rightarrow \varepsilon _{ \text{v}}=\lambda ^{1/\rho }\varepsilon _{v,0}n_{\text{v}}^{-1/\rho }\), and therefore that

    $$\begin{aligned} E\left( \varepsilon \mid \varepsilon \ge \varepsilon _{\text{v}}\right)&= {} \varepsilon _{v,0}^{\rho }\int _{\varepsilon _{\text{v}}}^{\infty }\rho \varepsilon ^{-\rho }d\varepsilon =\frac{\rho }{\rho -1}\varepsilon _{\text{v }}^{1-\rho }=\frac{\rho }{\rho -1}\left( \lambda ^{1/\rho }\varepsilon _{v,0}n_{\text{v}}^{-1/\rho }\right) ^{1-\rho } \\ &= \frac{\rho \varepsilon _{0}^{1-\rho }}{\rho -1}\lambda ^{\left( 1-\rho \right) /\rho }n_{\text{v}}^{\left( \rho -1\right) /\rho }. \end{aligned}$$

    Equation (4) of Opp (2019) assumes that, as a function of the number of projects, expected venture output is proportional to \(n_{\text{v}}^{\eta }\) with \(\eta \) set at 0.59. Our returns to scale would therefore be the same if we set

    $$\begin{aligned} \eta =\frac{\rho -1}{\rho }\Longleftrightarrow \rho =\frac{1}{1-\eta }=\frac{ 1}{0.41}=2.4. \end{aligned}$$

    As \(\rho \) rises the right tail gets thinner as the left tail thickens, and returns to scale rise because more projects are undertaken without that much loss in quality. Since buyout has a thicker right tail (see Fig. 6 in Sect. 4.3 below), its left tail is thinner and \(\rho \) is smaller, meaning that its returns diminish more rapidly, i.e., the parameter \(\eta \) in Eq. (4) of Opp (2019), had buyout been modeled there, would be smaller than that for venture.

  10. Different from parameters in Table 3, we set \(\gamma =1\) as used in Proposition 3 and further set the depreciation rate to 8% to achieve a reasonable range of growth rates. Similar to Table 3, we preset \(\beta =0.95\). The estimated parameters are \(\lambda =0.016\), \(\tau =0.76\), \(\theta =0.001 \).

  11. We set \(\delta =1\%\) to match the level of equity returns. Realistically, however, in a one-capital Ak model, k is an amalgam of physical and human capital. Lucas (1988), for example, assumes zero depreciation of h and in Eq. (30) he assumes that it even can appreciate through learning by doing. We later show that the results are robust to depreciation rates of 4% as in Karabarbounis and Neiman (2014), 5% as in Jovanovic and Rousseau (2014), and 6% as in Nadiri and Prucha (1996).

  12. Table 7 in the robustness section later shows that our model also fits the data well using combined VC returns.

  13. To produce the model-based time series, we insert historical \(\left( q,z\right) \) into the corresponding policy functions in the model.

  14. Results are highly robust to how we trim the sample.

  15. By construction then, \(\int {\hat{g}}^{i}\left( \varepsilon \right) d\varepsilon =1\) for \(i=\) v, b.

  16. An additional validation of distributional assumption is based on Jovanovic and Szentes (2013), who use the Pareto distribution for their analog of \( \varepsilon _{\text{v}}\). When fitting distributions of waiting times to successful exit and to termination of venture projects, in their Table 1 for the parameter \(\rho _{\text{v}}\) (for which their analog was titled \(\lambda \)) they use 1.55, 1.6,  and 1.73. At the middle value of \(\rho _{\text{v} }=1.6\) and the average q of 1.83, Eq. (37) from our model implies \(\frac{R_{\text{v}}}{R_{\text{E}}}=\frac{\rho _{\text{v}}}{\rho _{\text{v}}-1 }\frac{1}{q}=1.46\), which is close to the ratio \( \frac{R_{\text{VC}}}{R_{\text{S} \& \text{P}}}=1.32\) in the data.

  17. The fees that go to general partners absorb most of the rents and are thus not compensation going to capital providers. While an investor obtains the return on the S&P 500 almost fully (an ETF costs a few basis points annually), an investors’ PE investment comes with a hefty fee, likely in excess of 10% (Metrick & Yasuda, 2010).

  18. http://www.stern.nyu.edu/~adamodar/pc/datasets/histretSP.xls

  19. We also examined the CRSP Delistings Data, results do not change.

References

  • Abel, A. B., & Eberly, J. C. (2011). How Q and cash flow affect investment without frictions: An analytic explanation. Review of Economic Studies, 78(4), 1179–1200.

    Article  Google Scholar 

  • Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of Financial Economics, 17(2), 223–249.

    Article  Google Scholar 

  • Ang, A., Papanikolaou, D., & Westerfield, M. M. (2014). Portfolio choice with illiquid assets. Management Science, 60(11), 2737–2761.

    Article  Google Scholar 

  • Arrow, K. J. (1971). The economic implications of learning by doing. In Readings in the theory of growth (pp. 131–149). Palgrave Macmillan.

  • Cambridge Associates, LLC. (2016a). U.S. Venture capital index and selected benchmark statistics. Boston, MA.

  • Cambridge Associates, LLC. (2016b). Buyout and growth equity index and selected benchmark statistics. Boston, MA.

  • Cunningham, C., Ederer, F., & Ma, S. (2021). Killer acquisitions. Journal of Political Economy, 129(3), 649–702.

    Article  Google Scholar 

  • Damodaran, A. (2017). Annual returns on stocks, bonds, and bills, 1928-current. Downloaded from http://www.stern.nyu.edu/~adamodar/pc/datasets/histretSP.xls.

  • Epstein, L. G., & Zin, S. E. (1989). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica, 57(4), 937–969.

    Article  Google Scholar 

  • Gompers, P. A. (2002). Corporations and the financing of innovation: The corporate venturing experience. Economic Review, Federal Reserve Bank of Atlanta, 87(4), 1–18.

    Google Scholar 

  • Gompers, P. A., & Lerner, J. (1998). The determinants of corporate venture capital success: Organizational structure, incentives, and complementarities, Chap. 1. In R. K. Morck (Ed.), Concentrated corporate ownership (pp. 17–54). Chicago: University of Chicago Press.

    Google Scholar 

  • Gompers, P., Lerner, J., & Scharfstein, D. (2005). Entrepreneurial spawning: Public corporations and the genesis of new ventures, 1986 to 1999. Journal of Finance, 60(2), 577–614.

    Article  Google Scholar 

  • Gompers, P. A., Kovner, A., Lerner, J., & Scharfstein, D. (2008). Venture capital investment cycles: The impact of public markets. Journal of Financial Economics, 87(1), 1–23.

    Article  Google Scholar 

  • Gupta, A., & Van Nieuwerburgh, S. (2019). Valuing private equity strip by strip. In Working paper 26514. National Bureau of Economic Research.

  • Hall, R. E. (1988). The relation between price and marginal cost in U.S. industry. Journal of Political Economy, 96(5), 921–947.

    Article  Google Scholar 

  • Hall, R. E. (2001). The stock market and capital accumulation. American Economic Review, 91(5), 1185–1202.

    Article  Google Scholar 

  • Hamilton, B. H. (2000). Does entrepreneurship pay? An empirical analysis of the returns to self-employment. Journal of Political Economy, 108(3), 604–631.

    Article  Google Scholar 

  • Harris, R. S., Jenkinson, T., & Kaplan, S. N. (2014). Private equity performance: What do we know? Journal of Finance, 69(5), 1851–1882. Internet Appendix.

    Article  Google Scholar 

  • Jovanovic, B., & Szentes, B. (2013). On the market for venture capital. Journal of Political Economy, 121(3), 493–527.

    Article  Google Scholar 

  • Jovanovic, B., & Rousseau, P. L. (2014). Extensive and intensive investment over the business cycle. Journal of Political Economy, 122(4), 863–908.

    Article  Google Scholar 

  • Kaplan, S. N., & Schoar, A. (2005). Private equity performance: Returns, persistence and capital flows. Journal of Finance, 60(4), 1791–1823.

    Article  Google Scholar 

  • Kaplan, S. N., & Strömberg, P. (2009). Leveraged buyouts and private equity. Journal of Economic Perspectives, 23(1), 121–146.

    Article  Google Scholar 

  • Karabarbounis, L., & Neiman, B. (2014). Capital depreciation and labor shares around the world: Measurement and implications. In Working paper 20606. National Bureau of Economic Research.

  • Korteweg, A., & Nagel, S. (2016). Risk-adjusting the returns to venture capital. The Journal of Finance, 71(3), 1437–1470.

    Article  Google Scholar 

  • Korteweg, A., & Sorensen, M. (2010). Risk and return characteristics of venture capital-backed entrepreneurial companies. Review of Financial Studies, 23(10), 3738–3772.

    Article  Google Scholar 

  • Kortum, S., & Lerner, J. (2000). Assessing the contribution of venture capital to innovation. RAND Journal of Economics, 31, 674–692.

    Article  Google Scholar 

  • Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3–42.

    Article  Google Scholar 

  • Lucas, R. E. Jr. (1993). Making a miracle. Econometrica, 61(2), 251–272.

  • Lucas, R. E., & Moll, B. (2014). Knowledge growth and the allocation of time. Journal of Political Economy, 122(1), 1–51.

    Article  Google Scholar 

  • Mehra, R., & Prescott, E. C. (1985). The equity premium: A puzzle. Journal of Monetary Economics, 15(2), 145–161.

    Article  Google Scholar 

  • Metrick, A., & Yasuda, A. (2010). The economics of private equity funds. Review of Financial Studies, 23(6), 2303–2341.

    Article  Google Scholar 

  • Moskowitz, T. J., & Vissing-Jørgensen, A. (2002). The returns to entrepreneurial investment: A private equity premium puzzle? American Economic Review, 92(4), 745–778.

    Article  Google Scholar 

  • Nadiri, M. I., & Prucha, I. R. (1996). Estimation of the depreciation rate of physical and R &D capital in the US total manufacturing sector. Economic Inquiry, 34(1), 43–56.

    Article  Google Scholar 

  • Opp, C. C. (2019). Venture capital and the macro-economy. Review of Financial Studies, 32(11), 4387–4446.

    Article  Google Scholar 

  • Perla, J., & Tonetti, C. (2014). Equilibrium imitation and growth. Journal of Political Economy, 122(1), 52–76.

    Article  Google Scholar 

  • Rebelo, S. (1991). Long-run policy analysis and long-run growth. Journal of Political Economy, 99(3), 500–521.

    Article  Google Scholar 

  • Scherer, F. M. (2000). The size distribution of profits from innovation. In D. Encaoua, B. H. Hall, F. Laisney, & J. Mairesse (Eds.), The economics and econometrics of innovation, Chap 19 (pp. 473–494). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Searle, A. D. (1945). Productivity changes in selected wartime shipbuilding programs. Monthly Labor Review, 61, 1132–1147.

    Google Scholar 

  • Silverberg, G., & Verspagen, B. (2007). The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance. Journal of Econometrics, 139(2), 318–339.

    Article  Google Scholar 

  • Sorensen, M., Wang, N., & Wang, J. (2014). Valuing private equity. Review of Financial Studies, 27(7), 1977–2021.

    Article  Google Scholar 

  • U.S. Department of Commerce, Bureau of Economic Analysis. (2017). National income and product accounts. Washington, DC.

  • Vereshchagina, G., & Hopenhayn, H. A. (2009). Risk taking by entrepreneurs. American Economic Review, 99(5), 1808–1830.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyan Jovanovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank Yakov Amihud, Christian Opp, and Stijn Van Nieuwerburgh for comments, Zahin Haque and Angelo Orane for research assistance, the National Science Foundation and C. V. Starr Center for financial assistance, and seminar participants at the Federal Reserve Bank of Chicago, the Federal Reserve Board, NYU Stern, and The Ohio State University for helpful comments. The views expressed are those of the authors and do not necessarily reflect those of the Federal Reserve Board or the Federal Reserve System.

Appendices

Appendix A: Data and methods

In this appendix we document the data sources and methods used to construct the series depicted in our figures and included in the empirical analysis.

Figures 1 and 4. The “intakes” are the sum of investments made annually in U.S. venture capital and buyout funds, divided by annual estimates of gross private domestic investment from the BEA (2017, Table 5.2.5, line 4). Venture and buyout investments are from the April 2017 version of Thomson One’s VentureXpert database, and are the sum of all investments made in a given calendar year at any stage or round across funds of each type. The “intake ratio,” \(n_{\text{v} }/n_{\text{b}}\), is the ratio of the respective investment sums in each year.

For aggregate \(q_{t}\), we use fourth quarter observations underlying Hall (2001) for 1987–1999, and then join them with estimates underlying Abel and Eberly (2011) for 1999–2005. Abel and Eberly derive aggregate Tobin’s Q from the Federal Reserve Board’s Flow of Funds Accounts as the ratio of total market value of equity and bonds to private fixed assets in the non-financial corporate sector. We bring these estimates forward through 2016 using the same sources. Hall’s measure of Q in 1999 is higher than that of Abel and Eberly (3.376 vs. 1.819), so we use a ratio splicing factor of 1.856 to adjust the series from 2000 forward.

Figures 23 and 5. Aggregate returns to U.S. venture capital funds for 1987–2016 are from Cambridge Associates (2016a), and are annualized returns constructed by compounding one quarter horizon pooled returns. Aggregate returns to U.S. buyout funds for 1987–2016 are from Cambridge Associates (2016b), and are also annualized returns constructed from single quarter horizon pooled returns. Both series are net of fees, expenses, and carried interest.Footnote 17 The majority of the VC funds (1070 out of 1680) in our sample are in the early stage and earn large and positive returns. This is consistent with Korteweg and Nagel (2016), who document that VC start-up investments earn large positive abnormal returns whereas those in the later stage earn net returns close to zero. In addition, the positive VC returns could also reflect the possibility that general partners have considerable equity in the projects in addition to collecting fees. The average combined VC return \({\tilde{R}}_{VC}\) in our sample is 18.1%; this is in line with the estimates in Table IA.II in the Internet Appendix of Harris et al. (2014).

We convert each series into ex-post real returns using the annual growth of the consumer price index from the National Income and Product accounts. Annual returns to the S&P 500 are from Damodaran (2017),Footnote 18 and deflated by the consumer price index. We then subtract 1.05% from both venture and buyout returns, which is the liquidity premium reported in Sorensen et al. (2014).

Tables 1 and 2. For \(z_{t}\), we use private output, defined as GDP less government expenditures on consumption and investment from the BEA (2017) for 1987–2016. We then divide the result by \(K_{t-1}\) after adjusting it for inflation during year \(t-1\) by averaging the annual inflation factors across the 2 years that overlap \(t-1\) and then using its square root as a deflator. The \(K_{t}\) are end-year stocks of private fixed assets from BEA (2017, Table 6.1, line 1) for 1987–2016. The aggregate investment rate \(i_{t}\) is constructed as annual gross private domestic investment from BEA (2017, Table 5.2.5, line 4) for 1987–2016 divided by \(K_{t-1}\).

Figure 6. We obtained the data on venture and buyout funds from the Securities Data Company (SDC) Platinum and CRSP/Compustat Merged (CCM) Database.

For buyouts, the SDC lists the acquirer’s CUSIP and the market value before the merger. It also lists the year the merger occurred and the target’s assets. In the CCM, there are multiple CUSIPs per year in both the SDC and CRSP/Compustat data. The multiple CUSIPs per year in the SDC are due to an acquirer completing multiple mergers in a year. The multiple CUSIPs per year in the CRSP/Compustat are due to firms with different permanent numbers having the same CUSIPs. Unfortunately, the SDC does not contain permanent numbers (lpermno) so we can only match via CUSIPs. As a result, all observations in both datasets in which the same CUSIP appeared multiple times in a year were dropped from both datasets. We then merged the CCM and SDC based on the CUSIP and year of the merger. The combined value was then the shares outstanding at end of the year of the merger (CSHO from the CCM data) times the calendar year closing price (\(\hbox {PRCC}_{\text{C}}\) from CCM).

For venture, we use the firms from CCM, only keeping data for the first year a firm appears in the CCM data, and defining IPO value as the shares outstanding at the end of that year (CSHO) times the closing price (\(\hbox {PRCC}_{\text{C}}\)).Footnote 19

For both buyouts and venture, we further trim the sample based on firm’s value of common stock at 95% level (i.e. observations at the bottom 2.5% and top 2.5% of common stock values are dropped). Our final sample contains 8209 venture observations and 665 buyout observations. The annual data spans the periods from 1986 to 2017. For each venture and buyout funds in our sample, we compute the \(\varepsilon _{\text{v}}\) and \(\varepsilon _{ \text{b}}\) as defined in Eqs. (40) and (41), where IPO and combined value are defined as CSHO times the \(\hbox {PRCC}_{\text{C}}\). We truncate the distribution of \(\varepsilon _{\text{v}}\) and \(\varepsilon _{\text{b}}\) by \(\frac{1}{q_{t}}\) and \(\frac{q_{t}+\tau }{q_{t}}\), respectively, for each time t.

Appendix B: Proofs

1.1 B1: Proof of Proposition 1

Let L satisfy the equation

$$\begin{aligned} L=\left( \beta \int \left( \frac{1+q^{1-1/\gamma }L}{z+\sum \pi _{j}+\theta q \left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q}\right) ^{\gamma }\left[ z+\left( 1-\delta \right) q \right] {\textit{dF}}\left( s\right) \right) ^{1/\gamma }. \end{aligned}$$
(64)

First, suppose that a solution for L exists (its existence will be shown at the end of this proof). Since \(\frac{C^{\prime }}{C}=\frac{c^{\prime }}{c} \frac{k^{\prime }}{k}\), (4) implies

$$\begin{aligned} qc^{-\gamma }\left( \frac{k}{k^{\prime }}\right) ^{-\gamma }=\beta \int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\left( s^{\prime }\right), \end{aligned}$$
(65)

therefore

$$\begin{aligned} c\frac{k}{k^{\prime }}=\left( \frac{\beta }{q}\int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\left( s^{\prime }\right) \right) ^{-1/\gamma }, \end{aligned}$$

where \(k^{\prime }/k\) is defined in (17).

To simplify notation, we now omit the input of the function and denote \( G\equiv \ G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \). From income identity (20)

$$\begin{aligned} i=\frac{z+\sum \pi _{j}+\theta q\left( 1-G\right) -c}{q} \end{aligned}$$

thus we have

$$\begin{aligned} c\frac{k}{k^{\prime }}&= \frac{c}{1-\delta +\frac{1}{q}\left[ z+\ \sum \pi _{j}+\theta q\left( 1-G\right) -c\right] } \\ &= \frac{1}{\frac{1}{c}\left( 1-\delta +\frac{1}{q}\left( z+\sum \pi _{j}+\theta q\left( 1-G\right) \right) \right) -\frac{1}{q}}, \end{aligned}$$

where the second line uses the identity (56) which implies \( z-c=qx.\)

Therefore

$$\begin{aligned} \frac{1}{\frac{1}{c}\left( 1-\delta +\frac{1}{q}\left( z+\sum \pi _{j}+\theta q\left( 1-G\right) \right) \right) -\frac{1}{q}}=\left( \frac{ \beta }{q}\int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\right) ^{-1/\gamma } \end{aligned}$$

i.e.,

$$\begin{aligned} \frac{1}{c}\left( 1-\delta +\frac{1}{q}\left( z+\sum \pi _{j}+\theta q\left( 1-G\right) \right) \right) =\frac{1}{q}+\left( \frac{\beta }{q}\int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\right) ^{1/\gamma } \end{aligned}$$

i.e.,

$$\begin{aligned} c&= {} \frac{1-\delta +\frac{1}{q}\left( z+\sum \pi _{j}+\theta q\left( 1-G\right) \right) }{\frac{1}{q}+\left( \frac{\beta }{q}\int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\left( s^{\prime }\right) \right) ^{1/\gamma }} \\ &= \frac{z+\sum \pi _{j}+\theta q\left( 1-G\right) +\left( 1-\delta \right) q }{1+q^{1-1/\gamma }\left( \beta \int \left( c^{\prime }\right) ^{-\gamma } \left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\left( s^{\prime }\right) \right) ^{1/\gamma }} \\ &= \frac{z+\sum \pi _{i}\left( q\right) +\theta q\left( 1-G\right) +\left( 1-\delta \right) q}{1+q^{1-1/\gamma }L} \end{aligned}$$

where L is defined in (64), and

$$\begin{aligned} i&= \frac{z+\sum \pi _{j}+\theta q\left( 1-G\right) -c}{q} \\ &= \frac{\left[ z+\sum \pi _{j}+\theta q\left( 1-G\right) \right] q^{-1/\gamma }L-\left( 1-\delta \right) }{1+q^{1-1/\gamma }L}. \end{aligned}$$

Existence of solution for L in Eq. (22). Next, we show that L exists when (23) holds. Divide both sides of (64) by L to get

$$\begin{aligned} 1&= \left( \beta \int L^{-\gamma }\left( \frac{1+q^{1-1/\gamma }L}{z+\sum \pi _{j}+\left( 1-\delta \right) q}\right) ^{\gamma }\left[ z+\left( 1-\delta \right) q\right] {\textit{dF}}\right) ^{1/\gamma } \\ &= \left( \beta \int \left( \frac{L^{-1}+q^{1-1/\gamma }}{z+\sum \pi _{j}+\left( 1-\delta \right) q}\right) ^{\gamma }\left[ z+\left( 1-\delta \right) q\right] {\textit{dF}}\right) ^{1/\gamma }. \end{aligned}$$

Since \(L^{-1}\) ranges from zero to infinity as L ranges over the positive line, and since \(\gamma >0\), a necessary and sufficient condition for a solution for L to exist is that

$$\begin{aligned} \left( \beta \int \left( \frac{q^{1-1/\gamma }}{z+\sum \pi _{j}+\left( 1-\delta \right) q}\right) ^{\gamma }\left[ z+\left( 1-\delta \right) q \right] {\textit{dF}}\right) ^{1/\gamma }\le 1. \end{aligned}$$

This is equivalent to

$$\begin{aligned} 1\ge \beta ^{1/\gamma }\int q^{\gamma -1}\frac{z+\left( 1-\delta \right) q}{ \left( z+\sum \pi _{j}\left( q\right) +\left( 1-\delta \right) q\right) ^{\gamma }}{\textit{dF}}. \end{aligned}$$
(66)

Since \(\pi _{j}\) and \(\gamma \) are positive, for (66) to hold it suffices that

$$\begin{aligned} 1>\beta ^{1/\gamma }\int q^{\gamma -1}\frac{z+\left( 1-\delta \right) q}{ \left( z+\left( 1-\delta \right) q\right) ^{\gamma }}{\textit{dF}}=\beta ^{1/\gamma }\int \left( 1-\delta +\frac{z}{q}\right) ^{1-\gamma }{\textit{dF}}, \end{aligned}$$

i.e., (23).

1.2 B2: Proof of Proposition 2

When \(\gamma =1\), z and q are constant, Eq. (64) becomes

$$\begin{aligned} L\left( z+\sum \pi _{j}+\left( 1-\delta \right) q\right) =\beta \left( 1+L\right) \left[ z+\left( 1-\delta \right) q\right] . \end{aligned}$$

This implies that

$$\begin{aligned} L&= \frac{\beta \left[ z+\left( 1-\delta \right) q\right] }{\left( z+\sum \pi _{j}+\left( 1-\delta \right) q\right) -\beta \left[ z+\left( 1-\delta \right) q\right] } \\ &= \frac{\beta }{1-\beta +\left[ z+\left( 1-\delta \right) q\right] ^{-1}\sum \pi _{j}}. \end{aligned}$$

We denote

$$\begin{aligned} \mu =\left[ z+\left( 1-\delta \right) q\right] ^{-1}, \end{aligned}$$

then L can be expressed as,

$$\begin{aligned} L=\frac{\beta }{1-\beta +\mu \sum \pi _{j}}. \end{aligned}$$

We then have

$$\begin{aligned} i=\frac{\left( z+q\theta \int _{\varepsilon _{\text{b}}}^{\infty }\varepsilon dG^{\text{b}}\right) q^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta +\mu \sum \pi _{j}\right) }{1+\mu \sum \pi _{j}}. \end{aligned}$$

Using (6) and (12), we have

$$\begin{aligned} \sum \pi _{j}&= q\theta \int _{\varepsilon _{\text{b}}}^{\infty }\varepsilon dG^{\text{b}}-\left( \tau +q\right) \theta \left[ 1-G^{\text{b}}\left( \varepsilon _{\text{b}}\right) \right] \\ &\quad+q\lambda \int _{\varepsilon _{\text{v}}}^{\infty }\varepsilon dG^{\text{v} }-\lambda \left[ 1-G^{\text{v}}\left( \varepsilon _{\text{v}}\right) \right] \\ &= q\left( \frac{\theta }{\rho _{\text{b}}-1}\left( \frac{\tau +q}{ q\varepsilon _{\text{b, }0}}\right) ^{1-\rho _{\text{b}}}+\frac{\lambda }{ \rho _{\text{v}}-1}\left( \frac{1}{q\varepsilon _{\text{v, }0}}\right) ^{1-\rho _{v}}\right) . \end{aligned}$$

This implies

$$\begin{aligned} i&= \frac{\left( z+q\theta \int _{\varepsilon _{\text{b}}}^{\infty }\varepsilon dG^{\text{b}}\right) q^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta +\mu \sum \pi _{j}\right) }{1+\mu \sum \pi _{j}} \\ &= \frac{\left( z+\sum \pi _{i}+\theta q\left( 1+\frac{\tau }{q\varepsilon _{ \text{b, }0}}\right) ^{-\rho _{b}}\right) q^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta +\mu \sum \pi _{j}\right) }{1+\mu \sum \pi _{j}}. \end{aligned}$$

Thus the growth \(g=i-\delta \) becomes,

$$\begin{aligned} g=\frac{\left( z+\nu +\theta q\left( \frac{\tau +q}{q\varepsilon _{\text{b, } 0}}\right) ^{-\rho _{b}}\right) q^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta +\mu \nu \right) }{1+\mu \nu }-\delta , \end{aligned}$$

where

$$\begin{aligned} \nu =q\left( \frac{\theta }{\rho _{\text{b}}-1}\left( \frac{\tau +q}{ q\varepsilon _{\text{b, }0}}\right) ^{1-\rho _{\text{b}}}+\frac{\lambda }{ \rho _{\text{v}}-1}\left( \frac{1}{q\varepsilon _{\text{v, }0}}\right) ^{1-\rho _{v}}\right) . \end{aligned}$$

As for the comparative statics, first we have

$$\begin{aligned} \frac{\partial g}{\partial z}=q^{-1}\beta >0 .\end{aligned}$$

Next, we observe that,

$$\begin{aligned} \frac{\partial \nu }{\partial \rho _{b}}&= -q\theta \frac{\left[ \ln \left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}}\right) \left( \rho _{b}-1\right) +1\right] }{\left( \rho _{\text{b}}-1\right) ^{2}}\left( \frac{\tau +q}{ q\varepsilon _{\text{b, }0}}\right) ^{1-\rho _{\text{b}}} \\ &< 0. \end{aligned}$$

The last line follows because \(\varepsilon _{\text{b,}0}<\frac{\tau +q}{q} \) so that \(\frac{\tau +q}{q\varepsilon _{\text{b, }0}}>1\) or \(\ln \left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}}\right) >0\). Therefore, we have,

$$\begin{aligned} \frac{\partial \nu }{\partial \rho _{b}}<0. \end{aligned}$$

Similarly,

$$\begin{aligned} \frac{\partial \nu }{\partial \rho _{v}}=-q\lambda \frac{\left[ \ln \left( \frac{1}{q\varepsilon _{\text{v, }0}}\right) \left( \rho _{v}-1\right) +1 \right] }{\left( \rho _{\text{v}}-1\right) ^{2}}\left( \frac{1}{q\varepsilon _{\text{v, }0}}\right) ^{1-\rho _{\text{b}}}<0, \end{aligned}$$

where the inequality follows because \(\frac{1}{q\varepsilon _{\text{v, }0}} >1 \) or \(\ln \left( \frac{1}{q\varepsilon _{\text{v, }0}}\right) >0\). This implies that

$$\begin{aligned} \frac{\partial g}{\partial \nu }&= \left( q^{-1}\beta -q\left( 1-\delta \right) \mu \right) \left( 1+\mu \nu \right) \\ &\quad-\mu \left[ \left( z+\nu +\theta q\left( \frac{\tau +q}{q\varepsilon _{ \text{b, }0}}\right) ^{-\rho _{b}}\right) q^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta +\mu \nu \right) \right] \\ &= q^{-1}\beta \left[ 1+\mu \nu -\mu \left( z+\nu +\theta q\left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}}\right) ^{-\rho _{b}}\right) \right] +q\left( 1-\delta \right) \beta \mu \\ &= q^{-1}\beta \left[ \underset{>0}{\underbrace{\frac{\left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}+\theta \mu q\left( \frac{\tau +q}{ q\varepsilon _{\text{b, }0}}\right) ^{-\rho _{b}}}}\right] +q\left( 1-\delta \right) \beta \left[ z+\left( 1-\delta \right) q\right] ^{-1} \\ &> 0, \end{aligned}$$

which implies that

$$\begin{aligned} \frac{\partial g}{\partial \rho _{v}}&= \frac{\partial g}{\partial \nu } \frac{\partial \nu }{\partial \rho _{v}}<0 \\ \frac{\partial g}{\partial \rho _{b}}&= \frac{\partial g}{\partial \nu } \frac{\partial \nu }{\partial \rho _{b}}<0. \end{aligned}$$

Similarly,

$$\begin{aligned} \frac{\partial \nu }{\partial \tau }=-\theta \left( \frac{\tau +q}{ q\varepsilon _{\text{b, }0}}\right) ^{-\rho _{\text{b}}}<0, \end{aligned}$$

as stated in the proposition.

1.3 B3: Taylor approximation for growth and proof of Corollary 1

We consider a first-order Taylor expansion of the growth \(g\left( \lambda ,\theta \right) \) at \(\lambda =\theta =0\). First we notice that

$$\begin{aligned} v\left( 0,0\right) =0. \end{aligned}$$

Therefore we have,

$$\begin{aligned} g\left( 0,0\right) =zq^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta \right) -\delta . \end{aligned}$$

The first-order Taylor approximation reads,

$$\begin{aligned} g=g\left( 0,0\right) +g_{\lambda }\left( 0,0\right) \lambda +g_{\theta }\left( 0,0\right) \theta . \end{aligned}$$

Note that,

$$\begin{aligned} v_{\lambda }= & {} \frac{q}{\rho _{\text{v}}-1}\left( \frac{1}{q\varepsilon _{ \text{v, }0}}\right) ^{1-\rho _{v}} \end{aligned}$$
(67)
$$\begin{aligned} v_{\theta }= & {} \frac{q}{\rho _{\text{b}}-1}\left( \frac{\tau +q}{ q\varepsilon _{\text{b, }0}}\right) ^{1-\rho _{\text{b}}}. \end{aligned}$$
(68)

Therefore, we have

$$\begin{aligned} g_{\lambda }\left( 0,0\right)&= \frac{\left\{ \begin{array}{c} \left[ 1+\left[ z+\left( 1-\delta \right) q\right] ^{-1}\nu \right] \left( q^{-1}\beta \nu _{\lambda }-q\left( 1-\delta \right) \mu v_{\lambda }\right) \\ -\left\{ \begin{array}{c} \left( z+\nu +\theta q\left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}} \right) ^{-\rho _{b}}\right) q^{-1}\beta \\ -q\left( 1-\delta \right) \left( 1-\beta +\mu \nu \right) \end{array} \right\} \left[ \left[ z+\left( 1-\delta \right) q\right] ^{-1}\nu _{\lambda }\right] \end{array} \right\} }{\left[ 1+\left[ z+\left( 1-\delta \right) q\right] ^{-1}\nu \right] ^{2}} \\ &= \left( q^{-1}\beta \nu _{\lambda }-q\left( 1-\delta \right) \mu v_{\lambda }\right) -\left\{ zq^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta \right) \right\} \left[ \mu \nu _{\lambda }\right] \\ &= \frac{\left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}v_{\lambda }q^{-1}\beta -q\left( 1-\delta \right) \beta \left( \mu \nu _{\lambda }\right) . \end{aligned}$$

Similarly,

$$\begin{aligned} g_{\theta }\left( 0,0\right)&= \left\{ \begin{array}{c} \left( \left( v_{\theta }+q\left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}} \right) ^{-\rho _{b}}\right) q^{-1}\beta -q\left( 1-\delta \right) \left( \left[ z+\left( 1-\delta \right) q\right] ^{-1}\nu _{\theta }\right) \right) \\ -\left[ zq^{-1}\beta -q\left( 1-\delta \right) \left( 1-\beta \right) \right] \left[ z+\left( 1-\delta \right) q\right] ^{-1}\nu _{\theta } \end{array} \right\} \\ &= \frac{\left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}\left[ \left( v_{\theta }+q\left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}} \right) ^{-\rho _{b}}\right) \right] q^{-1}\beta -q\left( 1-\delta \right) \beta \left( \mu \nu _{\theta }\right) , \end{aligned}$$

so we have

$$\begin{aligned} g&\approx \left( z+\frac{\lambda \left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}v_{\lambda }+\frac{\theta \left( 1-\delta \right) q}{ z+\left( 1-\delta \right) q}\left( v_{\theta }+q\left( \frac{\tau +q}{ q\varepsilon _{\text{b, }0}}\right) ^{-\rho _{b}}\right) \right) q^{-1}\beta \\ &\quad-q\left( 1-\delta \right) \left( 1-\beta -\beta \left( \mu \lambda \nu _{\lambda }\right) -\beta \left( \mu \theta \nu _{\theta }\right) \right) -\delta \\&= \left( z+\frac{\lambda \left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}v_{\lambda }+\frac{\theta \left( 1-\delta \right) \rho _{b}q}{ z+\left( 1-\delta \right) q}v_{\theta }\right) q^{-1}\beta -q\beta \left( 1-\delta \right) \left[ \frac{1-\beta }{\beta }-\mu v\right] -\delta , \end{aligned}$$

where the last line follows

$$\begin{aligned} \lambda \nu _{\lambda }+\theta \nu _{\lambda }=v. \end{aligned}$$

Now we plug in (67) and (68), and get

$$\begin{aligned} g&\approx q^{-1}\beta \left( z+\frac{\lambda \left( 1-\delta \right) q}{ z+\left( 1-\delta \right) q}\frac{q}{\rho _{\text{v}}-1}\left( \frac{1}{ q\varepsilon _{\text{v, }0}}\right) ^{1-\rho _{v}}+\frac{\theta \left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}\frac{q\rho _{b}}{\rho _{ \text{b}}-1}\left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}}\right) ^{1-\rho _{\text{b}}}\right) \\ &\quad-q\beta \left( 1-\delta \right) \left[ \frac{1-\beta }{\beta }-\mu v\right] -\delta . \end{aligned}$$

We then get Eq. (29) using the following notation

$$\begin{aligned} {\tilde{A}}&= q^{-1}\beta \left( z+\frac{\left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}\left[ \frac{\lambda q}{\rho _{\text{v}}-1}\left( \frac{1 }{q\varepsilon _{\text{v, }0}}\right) ^{1-\rho _{v}}\right] \right. \\ &\quad \left. +\frac{\left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}\left[ \frac{\theta q\rho _{b}}{\rho _{\text{b}}-1}\left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}} \right) ^{1-\rho _{\text{b}}}\right] \right) \\ a&= q\beta \left( 1-\delta \right) \left( \frac{1-\beta }{\beta }-\left[ z+\left( 1-\delta \right) q\right] ^{-1}v\right) . \end{aligned}$$

Last, we notice that

$$\begin{aligned} \frac{\partial {\tilde{A}}}{\partial q}&= \left[ \begin{array}{c} -\frac{z\beta }{q^{2}}-\frac{\left( 1-\delta \right) q}{z+\left( 1-\delta \right) q}\left[ \underset{>0}{\underbrace{\lambda \left( \frac{1}{ q\varepsilon _{\text{v, }0}}\right) ^{-\rho _{v}}\frac{1}{q^{2}\varepsilon _{ \text{v, }0}}+\theta \rho _{b}\left( \frac{\tau }{q\varepsilon _{\text{b, }0} }\right) ^{-\rho _{b}}\frac{\tau +q}{q^{2}\varepsilon _{\text{v, }0}}}} \right] \\ -\frac{q^{-2}}{\left[ z\left( 1-\delta \right) ^{-1}q^{-1}+1\right] ^{2}} \left[ \underset{>0\text{ because }\rho _{v}>1\text{ and }\rho _{b}>1}{ \underbrace{\frac{\lambda q}{\rho _{\text{v}}-1}\left( \frac{1}{q\varepsilon _{\text{v, }0}}\right) ^{1-\rho _{v}}+\frac{\theta q\rho _{b}}{\rho _{\text{b }}-1}\left( \frac{\tau +q}{q\varepsilon _{\text{b, }0}}\right) ^{1-\rho _{ \text{b}}}}}\right] \end{array} \right] \\ &< 0 \end{aligned}$$

and

$$\begin{aligned} \frac{\partial a}{\partial q}&= \left( 1-\beta \right) \beta \left( 1-\delta \right) +\frac{\beta \left( 1-\delta \right) q^{-2}}{\left( zq^{-1}+\left( 1-\delta \right) \right) ^{2}}v \\ &> 0\text{ because }v>0. \end{aligned}$$

Therefore we have

$$\begin{aligned} \frac{\partial g}{\partial q}=\left( \underset{<0}{\underbrace{\frac{ \partial {\tilde{A}}}{\partial q}}}-\underset{>0}{\underbrace{\frac{\partial a }{\partial q}}}\right) <0 \end{aligned}$$

as stated in Proposition 2 and corollary 1.

1.4 B4: Derivations of Eqs. (35) and (37)

Derivation of (35). We first show the derivation for venture. Since \(1-G^{\text{v}}\left( \varepsilon _{\text{v}}\right) =e^{-\lambda _{\text{v}}\varepsilon _{\text{v}}}\), the first equality in ( 33) reads

$$\begin{aligned} \frac{R_{\text{v}}}{R_{\text{E}}}=q\lambda _{\text{v}}e^{\lambda _{\text{v} }\varepsilon _{\text{v}}}\int _{\varepsilon _{\text{v}}}^{\infty }\varepsilon e^{-\lambda _{\text{v}}\varepsilon }d\varepsilon . \end{aligned}$$
(69)

By a change of variable from \(\varepsilon \) to \(u=\varepsilon -\varepsilon _{ \text{v}}\), the RHS of (69) reads

$$\begin{aligned} \lambda _{\text{v}}e^{\lambda _{\text{v}}\varepsilon _{\text{v} }}\int _{0}^{\infty }\left( \varepsilon _{\text{v}}+u\right) e^{-\lambda _{ \text{v}}\left( \varepsilon _{\text{v}}+u\right) }du=\varepsilon _{\text{v}}+ \frac{1}{\lambda _{\text{v}}}. \end{aligned}$$
(70)

Substitution for \(\varepsilon _{\text{v}}\) from (11) into (70) and using (69) yields the first equality in Eq. (35).

Next, the derivation for buyout. Equation (34) reads

$$\begin{aligned} \frac{q}{\tau +q}e^{\lambda _{\text{b}}\varepsilon _{\text{b}}}\lambda _{ \text{v}}\int _{\varepsilon _{\text{b}}}^{\infty }\varepsilon e^{-\lambda _{ \text{b}}\varepsilon }d\varepsilon =\frac{q}{\tau +q}\left( \varepsilon _{ \text{b}}+\frac{1}{\lambda _{\text{b}}}\right) =\frac{q}{\tau +q}\left( \frac{\tau +q}{q}+\frac{1}{\lambda _{\text{b}}}\right) , \end{aligned}$$

i.e., the second equality in (35).

Derivation of (37). When \(\varepsilon _{i,0}\) is sufficiently small, Since the parameter \(\varepsilon _{\text{i, }0}\) cancels from the ratio \(\left( 1-G\left( \varepsilon _{\text{i}}\right) \right) dG^{ \text{i}}=\rho _{\text{i}}\varepsilon ^{-1-\rho _{\text{i}}}\) for \(i\in \left\{ \text{v, b}\right\} \), the first equality in Eq. (33) reads

$$\begin{aligned} \frac{\text{R}_{\text{v}}}{R_{\text{E}}}=q\left( \frac{1}{q}\right) ^{\rho _{ \text{v}}}\int _{1/q}^{\infty }\rho _{\text{v}}\varepsilon ^{-\rho _{\text{v} }}d\varepsilon =\left( \frac{1}{q}\right) ^{\rho _{\text{v}}-1}\frac{\rho _{ \text{v}}}{\rho _{\text{v}}-1}\left( \frac{1}{q}\right) ^{1-\rho _{\text{v} }}=\frac{\rho _{\text{v}}}{\rho _{\text{v}}-1}. \end{aligned}$$
(71)

The second equality in Eq. (33) reads

$$\begin{aligned} \frac{\text{R}_{\text{b}}}{R_{\text{E}}}&= q\left( \frac{\tau +q}{q}\right) ^{\rho _{\text{b}}}\frac{1}{\tau +q}\int _{\left( \tau +q\right) /q}^{\infty }\rho _{\text{b}}\varepsilon ^{-\rho _{\text{b}}}d\varepsilon =\frac{\rho _{ \text{b}}}{\rho _{\text{b}}-1}\left( \frac{\tau +q}{q}\right) ^{\rho _{\text{ b}}-1}\left( \frac{\tau +q}{q}\right) ^{1-\rho _{\text{b}}} \\ &= \frac{\rho _{ \text{b}}}{\rho _{\text{b}}-1}. \end{aligned}$$
(72)

Thus we have the two equalities stated in Eq. (37).

1.5 B5: Value function under EZ preferences

Nothing in Proposition 1 changes with EZ preferences, so the proof of Proposition 1 holds.

As for the value function, we first notice that the resource constraint is

$$\begin{aligned} z+\pi _{v}+\pi _{b}+\frac{q}{\tau +q}n_{b}=c+qi. \end{aligned}$$
(73)

The law of motion is

$$\begin{aligned} \frac{k^{\prime }}{k}=1-\delta +i. \end{aligned}$$
(74)

Combining (73) and (74), we get

$$\begin{aligned} c=z-q(\varGamma -1+\delta )+\pi _{v}+\pi _{b}+\frac{q}{\tau +q}n_{b}. \end{aligned}$$
(75)

We will verify that the value function takes the conjectured form:

$$\begin{aligned} v(z,q)k&= \max _{C,I}\left[ (1-\beta )(C)^{1-\psi }+\beta \left( E[v(z^{\prime },q^{\prime })k^{\prime }]^{\prime 1-\gamma }\right) ^{\frac{1-\psi }{ 1-\gamma }}\right] ^{\frac{1}{1-\psi }} \\ &= \max _{C,I}\left[ (1-\beta )(ck)^{1-\psi }+\beta \left( E[v(z^{\prime },q^{\prime })\varGamma k]^{1-\gamma }\right) ^{\frac{1-\psi }{1-\gamma }} \right] ^{\frac{1}{1-\psi }}. \end{aligned}$$

Using Eq. (75), then

$$\begin{aligned} v(z,q)k&\equiv \max _{\varGamma }\left[ \begin{array}{c} (1-\beta )\left( \left( z-q(\varGamma -1+\delta )+\pi _{v}+\pi _{b}+\frac{q}{ \tau +q}n_{b}\right) k\right) ^{1-\psi } \\ +\beta \left( E(v(z^{\prime },q^{\prime })\varGamma k)^{1-\gamma }\right) ^{ \frac{1-\psi }{1-\gamma }} \end{array} \right] ^{\frac{1}{1-\psi }} \\ &= \max _{\varGamma }\left[ \begin{array}{c} (1-\beta )\left( z-q(\varGamma -1+\delta )+\pi _{v}+\pi _{b}+\frac{q}{\tau +q} n_{b}\right) ^{1-\psi }k^{1-\psi } \\ +\beta \left( E(v(z^{\prime },q)\varGamma )^{\prime 1-\gamma }\right) ^{\frac{ 1-\psi }{1-\gamma }}k^{1-\psi } \end{array} \right] ^{\frac{1}{1-\psi }} \\ &= \max _{\varGamma }\left[ \begin{array}{c} (1-\beta )\left( z-q(\varGamma -1+\delta )+\pi _{v}+\pi _{b}+\frac{q}{\tau +q} n_{b}\right) ^{1-\psi } \\ +\beta \left( E(v(z^{\prime },q)\varGamma )^{\prime 1-\gamma }\right) ^{\frac{ 1-\psi }{1-\gamma }} \end{array} \right] ^{\frac{1}{1-\psi }}k. \end{aligned}$$

Therefore, we define

$$\begin{aligned} v(z,q)=\max _{\varGamma }\left[ \begin{array}{c} (1-\beta )\left( z-q(\varGamma -1+\delta )+\pi _{v}+\pi _{b}+\frac{q}{\tau +q} n_{b}\right) ^{1-\psi } \\ +\beta \left( E(v(z^{\prime },q^{\prime })\varGamma )^{1-\gamma }\right) ^{ \frac{1-\psi }{1-\gamma }} \end{array} \right] ^{\frac{1}{1-\psi }} \end{aligned}$$
(76)

so that \(v\left( z,q,k\right) =v(z,q)k\) as conjectured.

1.6 B6: Proof of Proposition 4

Taking first order conditions from 76:

$$\begin{aligned}&\left[ (1-\beta )(1-\psi )\left( z-q(\varGamma -1+\delta )+\pi _{v}+\pi _{b}+ \frac{q}{\tau +q}n_{b}\right) ^{-\psi }q\right] \\ &\quad =\beta (1-\psi )\varGamma ^{-\psi }\left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{ 1-\psi }{1-\gamma }}, \end{aligned}$$

which implies that

$$\begin{aligned} \Longrightarrow (1-\beta )qc^{-\psi }=\beta \varGamma ^{-\psi }\left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{1-\psi }{1-\gamma }}. \end{aligned}$$

Substituting our conjectures:

$$\begin{aligned}&(1-\beta )q\left( \frac{z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q}{1+q^{1-1/\psi }L}\right) ^{-\psi } \\ &\quad =\beta \left( 1-\delta +\frac{\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right) q^{-1/\psi }L-\left( 1-\delta \right) }{1+q^{1-1/\psi }L}\right) ^{-\psi } \\ &\qquad \times \left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{ 1-\psi }{1-\gamma }} \end{aligned}$$

and multiplying both sides by \((1+q^{1-\frac{1}{\psi }}L)^{-\psi }\)

$$\begin{aligned}&(1-\beta )q\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right) ^{-\psi } \\ &\quad =\beta \left( \left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right) q^{-1/\psi }L-\left( 1-\delta \right) +(1-\delta )(1+q^{1-\frac{1}{\psi }}L)\right) ^{-\psi } \\ &\qquad \times \left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{ 1-\psi }{1-\gamma }}, \end{aligned}$$

which implies that,

$$\begin{aligned}&\Longrightarrow (1-\beta )q\left( z+\sum \pi _{i}\left( q\right) +\theta q \left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right) ^{-\psi } \\ &\quad =\beta \left( \left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right) q^{-1/\psi }L+(1-\delta )q^{1-\frac{1}{\psi }}L)\right) ^{-\psi } \\ &\qquad \times \left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{ 1-\psi }{1-\gamma }}. \end{aligned}$$

Multiplying both sides by \(L^{\psi }\), we have

$$\begin{aligned}&(1-\beta )q\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right) ^{-\psi }L^{\psi } \\ &\quad =\beta \left( \left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right) q^{-1/\psi }+(1-\delta )q^{1-\frac{1}{\psi }})\right) ^{-\psi } \\ &\qquad \times \left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{ 1-\psi }{1-\gamma }}, \end{aligned}$$

or equivalently,

$$\begin{aligned} L^{\psi }=\frac{\beta }{1-\beta }\left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{1-\psi }{1-\gamma }}. \end{aligned}$$

This delivers a recursion for L that satisfies the FOC.

Now we need to verify that (42) holds. Notice that

$$\begin{aligned} v(z,q)&= \left[ (1-\beta )\left( z+\sum \pi _{i}\left( q\right) +\theta q \left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right. \right. \\ &\quad\left. \left. +\left( 1-\delta \right) q\right) ^{1-\psi }(1+q^{1-1/\psi }L)^{\psi }\right] ^{ \frac{1}{1-\psi }} \\ &= \left[ (1-\beta )\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right) \right] ^{\frac{1}{1-\psi }} \\ &\quad\times \left[ \left( \frac{z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q}{(1+q^{1-1/\psi }L)}\right) ^{-\psi }\right] ^{\frac{1}{1-\psi }} \\ &= \left[ (1-\beta )\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right) c^{-\psi }\right] ^{\frac{1}{1-\psi }}. \end{aligned}$$

If our value function guess holds, then (24) implies

$$\begin{aligned}&\left[ (1-\beta )\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right) c^{-\psi }\right] ^{\frac{1}{1-\psi }} \\ &\quad =\left[ (1-\beta )c^{1-\psi }+\beta \varGamma ^{1-\psi }\left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{1-\psi }{1-\gamma }}\right] ^{ \frac{1}{1-\psi }}. \end{aligned}$$

This implies that,

$$\begin{aligned}&\Longrightarrow (1-\beta )\left( z+\sum \pi _{i}\left( q\right) +\theta q \left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right) c^{-\psi } \\ &\quad =(1-\beta )c^{1-\psi }+\beta \varGamma ^{1-\psi }\left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{1-\psi }{1-\gamma }}. \end{aligned}$$

Or equivalently,

$$\begin{aligned}&\Longrightarrow \frac{z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q}{ c}\\ &=1 +\left( \frac{\varGamma }{c}\right) ^{1-\psi }\frac{\beta }{1-\beta } \left( Ev(z^{\prime },q^{\prime })^{1-\gamma }\right) ^{\frac{1-\psi }{ 1-\gamma }} \\ &\Longrightarrow \frac{z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q}{ c}=1+\left( \frac{\varGamma }{c}\right) ^{1-\psi }L^{\psi }. \end{aligned}$$

Plugging the conjecture for consumption on the LHS:

$$\begin{aligned} 1+q^{1-\frac{1}{\psi }}L=1+\left( \frac{\varGamma }{c}\right) ^{1-\psi }L^{\psi } \end{aligned}$$

which implies

$$\begin{aligned} q^{-\frac{1}{\psi }}L=\frac{\varGamma }{c}. \end{aligned}$$
(77)

Using the conjectures for c and \(\varGamma \), we can write the ratio \(\frac{ \varGamma }{c}\) as

$$\begin{aligned} \frac{g}{c}&=\left( \frac{z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q}{1+q^{1-\frac{1}{\psi }}L}\right) ^{-1} \\ &\quad\times \left( 1-\delta +\frac{\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right) q^{-\frac{1}{\psi }}L-(1-\delta )}{1+q^{1-\frac{1}{\psi }}L}\right) \\ &=\frac{(1-\delta )(1+q^{1-1/\psi }L)+\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right) q^{-\frac{1}{\psi }}L-(1-\delta )}{z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q} \\ &=\frac{(1-\delta )q^{1-1/\psi }L+\left( z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] \right) q^{-\frac{1}{\psi }}L}{z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q} \\ &=q^{-\frac{1}{\psi }}L .\end{aligned}$$

From Eqs. (77) and (23) it is clear that the conjectured decision rules satisfy the problem.

Last, from the budget constraint, we have

$$\begin{aligned} i=\frac{z+\sum \pi _{i}\left( q\right) +\theta q\left( 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right) -c}{q}, \end{aligned}$$

and we plug in \(c=\frac{z+\sum \pi _{i}\left( q\right) +\theta q\left( 1-G\right) +\left( 1-\delta \right) q}{1+q^{1-1/\psi }L}\), we have

$$\begin{aligned} i&= \frac{q^{1-1/\psi }L\left[ z+\sum \pi _{i}\left( q\right) +\theta q\left( 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right) \right] -\left( 1-\delta \right) q}{q\left( 1+q^{1-1/\psi }L\right) } \\ &= \frac{\left[ z+\sum \pi _{i}\left( q\right) +\theta q\left( 1-G^{\text{b} }\left( 1+\frac{\tau }{q}\right) \right) \right] q^{-1/\psi }L-\left( 1-\delta \right) }{1+q^{1-1/\psi }L} \end{aligned}$$

as stated in the proposition.

Proof that \(L_{\text{EZ}}=L\) when \(\psi =\gamma \). To show that \(L_{\text{EZ}}=L,\) we set \(\psi =\gamma \) in Eq. (44), which then reads

$$\begin{aligned} L_{\text{EZ}}= & {} \left[ \beta \int \frac{v(z,q)^{1-\gamma }}{1-\beta }{\textit{dF}} \right] ^{1/\gamma }, \end{aligned}$$
(78)
$$\begin{aligned} \text{where}\,v(z,q)^{1-\gamma }= & {} \frac{\left( 1-\beta \right) \left( z+\left( 1-\delta \right) q\right) \left( 1+q^{1-1/\gamma }L_{\text{EZ} }\right) ^{\gamma }}{\left[ z+\sum \pi _{i}\left( q\right) +\theta q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q\right] ^{\gamma }}. \end{aligned}$$
(79)

Substituting from (79) into (78) and simplifying makes the resulting equation the same as Eq. (22) in Proposition 2.

1.7 B7: Proof of Propositions 6 and 7

We first give the proof for venture: Using (53) we find that relative to k the number of ideas is \(\lambda h/k=\lambda \kappa \), and the intake of VC funds (6) becomes

$$\begin{aligned} n_{\text{v}}\equiv \#\,\text{VC-backed projects} = \lambda \left[ 1-G^{\text{v}}\left( \varepsilon _{\text{v}}\right) \right] . \end{aligned}$$
(80)

Their payouts now are

$$\begin{aligned} D_{\text{v}}\left( s^{\prime }\right) =\left( \alpha z^{\prime }+\left( 1-\delta \right) q^{\prime }\right) x_{\text{v}}, \end{aligned}$$

and \(x_{\text{v}}\) in (8) is normalized by \(\kappa \):

$$\begin{aligned} x_{\text{v}}=\lambda \int _{\varepsilon _{\text{v}}}^{\infty }\varepsilon dG^{ \text{v}}. \end{aligned}$$
(81)

A VC fund chooses \(\varepsilon _{\text{v}}\) to maximize the expected utility of its investors exactly as in (9). Since \(\int \left( \frac{C}{C^{\prime }}\right) ^{\gamma }D_{\text{v}}{\textit{dF}}=x_{\text{v}}\int \left( \frac{C}{C^{\prime }}\right) ^{\gamma }\left( \alpha \frac{y^{\prime } }{k^{\prime }}+\left( 1-\delta \right) q^{\prime }\right) {\textit{dF}}=\frac{q}{\beta } \lambda \kappa \int _{\varepsilon _{\text{v}}}^{\infty }\varepsilon dG^{\text{ v}}\), the problem in (9) reduces to

$$\begin{aligned} \pi _{\text{v}}\left( q\right) \equiv \max _{\varepsilon _{\text{v}}}\left( q\lambda \int _{\varepsilon _{\text{v}}}^{\infty }\varepsilon dG^{\text{v} }-n_{\text{v}}\right) . \end{aligned}$$
(82)

Since \(n_{\text{v}}\) in (80) is now also normalized by \(\kappa \), we have

$$\begin{aligned} \pi _{\text{v}}\left( q\right) =\pi _{\text{v}}\left( q\right) , \end{aligned}$$
(83)

and the minimal accepted quality of VC-backed projects is still \(\varepsilon _{\text{v}}=\frac{1}{q}\) as stated in (11)

Buyout Funds Instead of (12), total buyout fund investment is

$$\begin{aligned} n_{\text{b}}\equiv \left( \tau +q\right) \theta \left[ 1-G^{\text{b}}\left( \varepsilon _{\text{b}}\right) \right] . \end{aligned}$$
(84)

and buyout payouts become

$$\begin{aligned} D_{\text{b}}\left( s^{\prime }\right) =\left( \alpha \frac{y^{\prime }}{ k^{\prime }}+\left( 1-\delta \right) q^{\prime }\right) x_{\text{b}}, \end{aligned}$$

where instead of (14), we have

$$\begin{aligned} x_{\text{b}}=\theta \int _{\varepsilon _{\text{b}}}^{\infty }\varepsilon dG^{ \text{b}}. \end{aligned}$$
(85)

The buyout fund chooses \(\varepsilon _{\text{b}}\) to maximize

$$\begin{aligned} \beta \int \left( \frac{C}{C^{\prime }}\right) ^{\gamma }D_{\text{b}}\left( s^{\prime }\right) {\textit{dF}}\left( s^{\prime },s\right) -n_{\text{b}}, \end{aligned}$$

and using the same logic as that behind the proof of (11), we get the buyout fund’s decision problem

$$\begin{aligned} {\hat{\pi }}_{\text{b}}\left( q\right) \equiv \max _{\varepsilon _{\text{b} }}\left( q\theta \int _{\varepsilon _{\text{b}}}^{\infty }\varepsilon dG^{ \text{b}}-n_{\text{b}}\right) , \quad \text{subject to }(\mathrm{A21}), \end{aligned}$$
(86)

with its optimal cutoff rule \(\varepsilon _{\text{b}}\) also the same as in (16). Now let L satisfy the equation

$$\begin{aligned} L=\left( \beta \int \left( \frac{1+q^{1-1/\gamma }L}{z+\sum \pi _{j}+\theta \kappa q\left[ 1-G^{\text{b}}\left( 1+\frac{\tau }{q}\right) \right] +\left( 1-\delta \right) q}\right) ^{\gamma }\left[ z+\left( 1-\delta \right) q \right] {\textit{dF}}\left( s\right) \right) ^{1/\gamma }. \end{aligned}$$
(87)

Since \(\frac{C^{\prime }}{C}=\frac{c^{\prime }}{c}\frac{k^{\prime }}{k}\), ( 4) implies

$$\begin{aligned} qc^{-\gamma }\left( \frac{k}{k^{\prime }}\right) ^{-\gamma }=\beta \int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\left( s^{\prime }\right), \end{aligned}$$
(88)

therefore

$$\begin{aligned} c\frac{k}{k^{\prime }}=\left( \frac{\beta }{q}\int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\left( s^{\prime }\right) \right) ^{-1/\gamma }, \end{aligned}$$

where \(k^{\prime }/k\) is defined in (17). To simplify notation, we now omit the input of the function and denote \(G\equiv \ G^{ \text{b}}\left( 1+\frac{\tau }{q}\right) \). From income identity (20)

$$\begin{aligned} i=\alpha \frac{z+\sum \pi _{j}+\theta \kappa q\left( 1-G\right) -c}{q} \end{aligned}$$

thus we have

$$\begin{aligned} c\frac{k}{k^{\prime }}&= \frac{c}{1-\delta +\frac{\alpha }{q}\left[ z+\sum \pi _{j}+\theta \kappa q\left( 1-G\right) -c\right] } \\ &= \frac{1}{\frac{1}{c}\left( 1-\delta +\frac{\alpha }{q}\left( z+\sum \pi _{j}+\theta \kappa q\left( 1-G\right) \right) \right) -\frac{1}{q}}, \end{aligned}$$

where the second line uses the identity (56) which implies \(z-c= \frac{q}{\alpha }x.\) Therefore

$$\begin{aligned} \frac{1}{\frac{1}{c}\left( 1-\delta +\frac{\alpha }{q}\left( z+\sum \pi _{j}+\theta \kappa q\left( 1-G\right) \right) \right) -\frac{1}{q}}=\left( \frac{\beta }{q}\int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\right) ^{-1/\gamma } \end{aligned}$$

i.e.,

$$\begin{aligned} c&= \frac{1-\delta +\frac{\alpha }{q}\left( z+\sum \pi _{j}+\theta \kappa q\left( 1-G\right) \right) }{\frac{1}{q}+\left( \frac{\beta }{q}\int \left( c^{\prime }\right) ^{-\gamma }\left[ z^{\prime }+\left( 1-\delta \right) q^{\prime }\right] {\textit{dF}}\left( s^{\prime }\right) \right) ^{1/\gamma }} \\ &= \frac{z+\sum \pi _{i}\left( q\right) +\theta \kappa q\left( 1-G\right) +\left( 1-\delta \right) q}{1+q^{1-1/\gamma }L} \end{aligned}$$

where L is defined in (64), and

$$\begin{aligned} i&= {} \alpha \frac{z+\sum \pi _{j}+\theta \kappa q\left( 1-G\right) -c}{q} \\ &= \alpha \frac{\left[ z+\sum \pi _{j}+\theta \kappa q\left( 1-G\right) \right] q^{-1/\gamma }L-\left( 1-\delta \right) }{1+q^{1-1/\gamma }L}. \end{aligned}$$

as stated in Proposition 7.

Appendix C: Additional tables and figures

See the Table 10 and Fig. 7.

Table 10 Parameters for the estimation under EZ preferences, Freely Estimate \(\left( \gamma ,\psi \right) \)
Fig. 7
figure 7

Growth and PE: a numerical example for the Pareto distribution in Eq. (26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanovic, B., Ma, S. & Rousseau, P.L. Private equity and growth. J Econ Growth 27, 315–363 (2022). https://doi.org/10.1007/s10887-022-09208-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10887-022-09208-2

Keywords

JEL classification

Navigation