Journal of Economic Growth

, Volume 19, Issue 1, pp 105–140 | Cite as

Malthus in cointegration space: evidence of a post-Malthusian pre-industrial England

  • Niels Framroze Møller
  • Paul Sharp


This paper re-examines the interaction between population growth and income per capita in pre-industrial England. Our results suggest that, as early as two centuries preceding the Industrial Revolution, England had already escaped the Malthusian Epoch and entered a post-Malthusian regime, where income per capita continued to spur population growth but was no longer stagnant. Our formulation of a post-Malthusian hypothesis implies cointegration between vital rates (birth- and death rates) and income and builds explicitly on a simple model of Malthusian stagnation. We show that this hypothesis can be interpreted as an extension of the latter model where the negative Malthusian feedback effect from population on income, as implied by diminishing returns to labor, is offset by a positive Boserupian and/or Smithian scale effect of population on technology.


Cointegration Malthus Post-Malthusian regime Pre-industrial England Structural model Unified growth theory 



We thank Robert Allen, Gregory Clark, Carl-Johan Dalgaard, Luca Fanelli, Oded Galor, Christian Groth, Hans Oluf Hansen, Ingrid Henriksen, Joannes Jacobsen, Peter Sandholt Jensen, Søren Johansen, Katarina Juselius, Nicolai Kaarsen, Marc Patrick Brag Klemp, Anders Bredahl Kock, Ronald Demos Lee, Diana Framroze Møller, Heino Bohn Nielsen, Ragnar Nymoen, Karl Gunnar Persson, Anders Rahbek, Samad Sarferaz and Jacob Weisdorf. We are also grateful to the anonymous referees of the Journal of Economic Growth. Finally, we thank participants at the DGPE workshop 2007, participants at the 1st FRESH meeting at the Paris School of Economics, participants at the Sixth World Congress of Cliometrics, and Workshop participants from the Economics group at LUISS, Rome.

Supplementary material (120 kb)
ESM 1 (ZIP 120 kb)


  1. Aiyar, S., Dalgaard, C.-J., & Moav, O. (2008). Technological progress and regress in pre-industrial times. Journal of Economic Growth, 13(2), 125–144.CrossRefGoogle Scholar
  2. Allen, R. C. (2001). The great divergence in European wages and prices from the middle ages to the first world war. Explorations in Economic History, 38(4), 411–447.CrossRefGoogle Scholar
  3. Ashraf, Q., & Galor, O. (2011). Dynamics and stagnation in the Malthusian epoch. American Economic Review, 101(5), 2003–2041.CrossRefGoogle Scholar
  4. Bailey, R. E., & Chambers, M. J. (1993). Long-term demographic interactions in precensus England. Journal of the royal statistical society, Series A, 156(3), 339–362.CrossRefGoogle Scholar
  5. Boserup, E. (1965). The conditions of agricultural growth. London: G. Allen and Unwin.Google Scholar
  6. Boserup, E. (1981). Population and technological change. A study of long-term trends. Chicago: University of Chicago Press.Google Scholar
  7. Brown, P. E. H., & Hopkins, S. V. (1957). Wage-rates and prices: Evidence for population pressure in the sixteenth century. Economica, 24(96), 289–306.CrossRefGoogle Scholar
  8. Clark, G. (2005). The condition of the working-class in England, 1209–2004. Journal of Political Economy, 113(6), 1307–1340.CrossRefGoogle Scholar
  9. Clark, G. (2007). A farewell to alms: A brief economic history of the world. Princeton, NJ: Princeton University Press.Google Scholar
  10. Collard, D. (2001). Malthus, population, and the generational bargain. History of Political Economy, 33(4), 697–716.CrossRefGoogle Scholar
  11. Crafts, N., & Mills, T. C. (2009). From malthus to solow: How did the malthusian economy really evolve? Journal of Macroeconomics, 31(1), 68–93.CrossRefGoogle Scholar
  12. Dennis, J. G., Hansen, H., & Juselius, K. (2006). CATS in RATS. Cointegration analysis of time series, Version 2. Estima: Evanston, IL.Google Scholar
  13. Doornik, J. A. (1998). Approximations to the asymptotic distribution of cointegration tests. Journal of Economic Surveys, 12(5), 573–593.CrossRefGoogle Scholar
  14. Doornik, J. A. (2010). OxMetrics version 6.10.Google Scholar
  15. Doornik, J. A., & Hendry, D. F. (1998). Givewin. An interface to empirical modelling. London: Timberlake Consultants Press.Google Scholar
  16. Doornik, J. A., Hendry, D. F., & Nielsen, B. (1998). Inference in cointegrating models: UK M1 Revisited. Journal of Economic Surveys, 12(5), 533–572.CrossRefGoogle Scholar
  17. Fox, A. (1972). Outliers in time series. Journal of the Royal Statistical Society, 34(3), 35063.Google Scholar
  18. Franses, P. H., & Haldrup, N. (1994). The effect of additive outliers on tests for unit roots and cointegration. Journal of Business and Economic Statistics, 12(4), 471–478.Google Scholar
  19. Galor, O. (2005). From stagnation to growth: Unified growth theory. In P. Aghion & S. Durlauf (Eds.), Handbook of economic growth (Vol. 1, Chap. 4, pp. 171–293). Amsterdam: Elsevier.Google Scholar
  20. Galor, O. (2011). Unified growth theory. Princeton NJ: Princeton University Press.Google Scholar
  21. Galor, O., & Weil, D. N. (2000). Population, technology, and growth: From Malthusian stagnation to the demographic transition and beyond. American Economic Review, 90(4), 806–828.CrossRefGoogle Scholar
  22. Granger, C. W. J. (1981). Some properties of time series data and their use in econometric model specification. Journal of Econometrics, 16(1), 121–130.CrossRefGoogle Scholar
  23. Hoover, K., Juselius, K., & Johansen, S. (2008). Allowing the data to speak freely: The macroeconometrics of the cointegrated vector autoregression. American Economic Review, Papers and Proceedings, 98(2), 251–255.CrossRefGoogle Scholar
  24. Johansen, S. (1992). Testing weak exogeneity and the order of cointegration in UK money demand data. Journal of Policy Modeling, 14(3), 313–334.CrossRefGoogle Scholar
  25. Johansen, S. (1996). Likelihood-based inference in cointegrated vector autoregressive models. Oxford: Advanced Texts in Econometrics, Oxford University Press.Google Scholar
  26. Johansen, S. (2002). A small sample correction for the test of cointegrating rank in the vector autoregressive model. Econometrica, 70(5), 1929–1961.CrossRefGoogle Scholar
  27. Johansen, S. (2006). Confronting the economic model with the data. In D. Colander (Ed.), Post walrasian macroeconomics: Beyond the dynamic stochastic general equilibrium model (Vol. 1, Chap. 15, pp. 287–300). Cambridge: Cambridge University Press.Google Scholar
  28. Juselius, K. (2006). The cointegrated VAR model: Econometric methodology and macroeconomics applications. Oxford: Oxford University Press.Google Scholar
  29. Kremer, M. (1993). Population growth and technological change: One million B.C. to 1990. The Quarterly Journal of Economics, 108(3), 681–716.CrossRefGoogle Scholar
  30. Lee, R. (1973). Population in pre-industrial England: An econometric analysis. The Quarterly Journal of Economics, 87(4), 581–607.CrossRefGoogle Scholar
  31. Lee, R. (1977). Methods and models for analyzing historical series of births, deaths and marriages. In R. Lee (Ed.), Population patterns in the past (pp. 337–370). London: Academic Press.CrossRefGoogle Scholar
  32. Lee, R. (1985a). Inverse projection and back projection: A critical appraisal, and comparative results for England, 1539 to 1871. Population Studies, 39(4), 233–248.CrossRefGoogle Scholar
  33. Lee, R. (1985b). Population homeostasis and English demographic history. Journal of Interdisciplinary History, 15(4), 635–660.CrossRefGoogle Scholar
  34. Lee, R. (1988). Induced population growth and induced technological progress: Their interaction in the accelerating stage. Mathematical Population Studies, 1(3), 265–288.CrossRefGoogle Scholar
  35. Lee, R. (1993a). Accidental and systematic change in population history: Homeostasis in a stochastic setting. Explorations in Economic History, 30(1), 1–30.CrossRefGoogle Scholar
  36. Lee, R. (1993b). A critical assessment of new methods. In D. Reher & R. Schofield (Eds.), Old and new methods in historical demography (pp. 7–28). Oxford: Oxford University Press.Google Scholar
  37. Lee, R. (1997). Population dynamics: Equilibrium, disequilibrium, and consequences of fluctuations. In R. Rosenzweig & O. Stark (Eds.), Handbook of population and family economics (pp. 1063–1115). Amsterdam: Elsevier.CrossRefGoogle Scholar
  38. Lee, R., & Anderson, M. (2002). Malthus in state space: Macro economic-demographic relations in English history, 1540 to 1870. Journal of Population Economics, 15(2), 195–220.CrossRefGoogle Scholar
  39. Lin Lee, M., & Loschky, D. (1987). Malthusian population oscillations. The Economic Journal, 97(387), 727–739.CrossRefGoogle Scholar
  40. Lindert, P. H. (1985). English population, wages, and prices: 1541–1913. The Journal of Interdisciplinary History, 15(4), 609–634.CrossRefGoogle Scholar
  41. Maddison, A. (2003). The world economy: Historical statistics. Paris: OECD.CrossRefGoogle Scholar
  42. Malthus, T. R. (1798). An essay on the principle of population. London: Electronic Scholarly Publishing.Google Scholar
  43. Miller, M. H., & Upton, C. W. (1986). Macroeconomics: A neoclassical introduction. Chicago: The University of Chicago Press.Google Scholar
  44. Møller, N. F. (2008). Bridging economic theory models and the cointegrated vector autoregressive model. Economics: The Open-Access, Open-Assessment E-Journal, 2, 36.Google Scholar
  45. Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica, 29(3), 315–335.CrossRefGoogle Scholar
  46. Nicolini, E. A. (2007). Was Malthus right? A VAR analysis of economic and demographic interactions in pre-industrial England. European Review of Economic History, II, 99–121.CrossRefGoogle Scholar
  47. Nielsen, H. B. (2004). Cointegration analysis in the presence of outliers. The Econometrics Journal, 7(1), 249–271.CrossRefGoogle Scholar
  48. Persson, K. (1988). Pre-industrial economic growth: Social organization and technological progess in Europe. Oxford: Blackwell.Google Scholar
  49. Phelps Brown, H. (1981). A perspective of wages and prices. London: Methuen.Google Scholar
  50. Rahbek, A., Hansen, E., & Dennis, J. G. (2002). ARCH innovations and their impact on cointegration rank testing. Preprint no.12, 1998, Department of Theoretical Statistics. Working paper no.22, Centre for Analytical Finance.Google Scholar
  51. Schultz, T. P. (1981). Economics of population. Menlo Park, CA: Addison-Wesley.Google Scholar
  52. Shin, D. W., Sarkar, S., & Lee, J. H. (1996). Unit root tests for time series with outliers. Statistics & Probability Letters, 30(3), 189–197.CrossRefGoogle Scholar
  53. Simon, J. L. (1977). The economics of population growth. Princeton, NJ: Princeton University Press.Google Scholar
  54. Vogelsang, T. J. (1999). Two simple procedures for testing for a unit root when there are additive outliers. Journal of Time Series Analysis, 20(2), 237–252.CrossRefGoogle Scholar
  55. Wrigley, E. A., & Schofield, R. S. (1989). The population history of England 1541–1871: A reconstruction. Cambrigde: Cambrigde University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.DTU Management Engineering, Energy Systems AnalysisTechnical University of DenmarkRoskildeDenmark
  2. 2.Department of EconomicsUniversity of CopenhagenKøbenhavn KDenmark
  3. 3.Department of Business and EconomicsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations