Journal of Economic Growth

, Volume 18, Issue 1, pp 69–108 | Cite as

Measuring human development: a stochastic dominance approach

  • Mehmet Pinar
  • Thanasis StengosEmail author
  • Nikolas Topaloglou


We consider a weighting scheme that yields a best-case scenario for measured human development such as the official equally-weighted Human Development Index (HDI) using an approach that relies on consistent tests for stochastic dominance efficiency. We compare the official equally-weighted HDI to all possible indices constructed from a set of individual components to obtain the most optimistic scenario for development. In the best-case scenario index education is weighted considerably more than the other two components, per capita income and life expectancy, relative to the weight that it gets in the official equally-weighted index. It also turns out that the improvement in the official HDI is mainly driven by improvements over time in the education index, the component moving fastest relative to its targets, when compared with per capita income and life expectancy. We find that the best-case scenario hybrid index leads to a marked improvement of measured development over time when compared with the official equally-weighted HDI.


Nonparametric Stochastic Dominance Human Development Index Mixed integer programming 

JEL Classification

C12 C13 C15 O15 C57 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abadie A. (2002) Bootstrap tests for distributional treatment effects in instrumental variable models. Journal of the American Statistical Association 97(457): 284–292CrossRefGoogle Scholar
  2. Anderson G. (1996) Nonparametric tests of stochastic dominance in income distributions. Econometrica 64(5): 1183–1193CrossRefGoogle Scholar
  3. Barrett G. F., Donald S. G. (2003) Consistent tests for stochastic dominance. Econometrica 71(1): 71–104CrossRefGoogle Scholar
  4. Beach C., Davidson R. (1983) Distribution-free statistical inference with Lorenz curves and income shares. Review of Economic Studies 50(4): 723–735CrossRefGoogle Scholar
  5. Becker G. S., Philipson T. J., Soares R. R. (2005) The quantity and quality of life and the evolution of world inequality. American Economic Review 95(1): 277–291CrossRefGoogle Scholar
  6. Biswas B., Caliendo F. (2002) A multivariate analysis of the human development index. Indian Economic Journal 49(4): 96–100Google Scholar
  7. Cahill M. B. (2002) Diminishing returns to GDP and the human development index. Applied Economics Letters 9(13): 885–887CrossRefGoogle Scholar
  8. Cahill M. B. (2005) Is the human development index redundant. Eastern Economic Journal 31(1): 1–5Google Scholar
  9. Carlstein E. (1986) The use of subseries methods for estimating the variance of a general statistic from a stationary time series. Annals of Statistics 14(3): 1171–1179CrossRefGoogle Scholar
  10. Chamie J. (1994) Population databases in development analysis. Journal of Development Economics 44(1): 131–146CrossRefGoogle Scholar
  11. Davidson R., Duclos J.-Y. (2000) Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 68(6): 1435–1464CrossRefGoogle Scholar
  12. Duclos J.-Y., Sahn D. E., Younger S. D. (2006) Robust multidimensional poverty comparisons. Economic Journal 116(514): 943–968CrossRefGoogle Scholar
  13. Easterlin R. A. (1995) Will raising the incomes of all increase the happiness of all?. Journal of Economic Behavior and Organization 27(1): 35–47CrossRefGoogle Scholar
  14. Engineer, M., & King, I. (2010). Maximizing human development. Research Paper No. 1111, Department of Economics, University of Melbourne.Google Scholar
  15. Fleurbaey M. (2009) Beyond the GDP: The quest for a measure of social welfare. Journal of Economic Literature 47(4): 1029–1075CrossRefGoogle Scholar
  16. Hopkins M. (1991) Human development revisited: A new UNDP report. World Development, 19(10): 1469–1473CrossRefGoogle Scholar
  17. Kakwani N. (1984) Welfare ranking of income distributions. Advances in Econometrics 3: 191–213Google Scholar
  18. Kelley A. C. (1991) The human development index: “Handle with care”. Population and Development Review 17(2): 315–324CrossRefGoogle Scholar
  19. Lai D. (2000) Temporal analysis of human development indicators: Principal component approach. Social Indicators Research 51(3): 331–366CrossRefGoogle Scholar
  20. Lehmann E. L. (1986) Testing statistical hypotheses. Wiley, New YorkCrossRefGoogle Scholar
  21. Linton O., Maasoumi E., Whang Y.-J. (2005) Consistent testing for stochastic dominance under general sampling schemes. Review of Economic Studies 72(3): 735–765CrossRefGoogle Scholar
  22. Maasoumi E. (1999) Multidimensional approaches to welfare analysis. In: Silber J. (ed.) Handbook of income inequality measurement. Kluwer, Dordrecht, pp 437–484CrossRefGoogle Scholar
  23. McGillivray M. (1991) The human development index: Yet another redundant composite development indicator?. World Development 19(10): 1461–1468CrossRefGoogle Scholar
  24. McGillivray M. (2005) Measuring non-economic well-being achievement. Review of Income and Wealth 51(2): 337–364CrossRefGoogle Scholar
  25. McGillivray M., White H. (1993) Measuring development? The UNDP’s human development index. Journal of International Development 5(2): 183–192CrossRefGoogle Scholar
  26. Noorbakhsh F. (1998) A modified human development index. World Development 26(3): 517–528CrossRefGoogle Scholar
  27. Ogwang T. (1994) The choice of principal variables for computing the human development index. World Development 22(12): 2011–2014CrossRefGoogle Scholar
  28. Ogwang T., Abdou A. (2003) The choice of principal variables for computing some measures of human well-being. Social Indicators Research 64(1): 139–152CrossRefGoogle Scholar
  29. Ponthière, G. (2004). Incorporating changes in life expectancy into economic growth rates: An application to Belgium, 1867–1997. CREPP Working Papers 2004/03.Google Scholar
  30. Pressman S., Summerfield G. (2000) The economic contributions of Amartya Sen. Review of Political Economy 12(1): 89–113CrossRefGoogle Scholar
  31. Ram R. (1982) Composite indices of physical quality of life, basic needs fulfilment, and income: A ‘principal component’ representation. Journal of Development Economics 11(2): 227–247CrossRefGoogle Scholar
  32. Ravallion M. (1997) Good and bad growth: The human development reports. World Development 25(5): 631–638CrossRefGoogle Scholar
  33. Rio E. (2000) Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques et Applications, 31. Springer, BerlinGoogle Scholar
  34. Saito M. (2003) Amartya Sen’s capability approach to education: A critical exploration. Journal of Philosophy of Education 37(1): 17–33CrossRefGoogle Scholar
  35. Scaillet O., Topaloglou N. (2010) Testing for stochastic dominance efficiency. Journal of Business and Economic Statistics 28(1): 169–180CrossRefGoogle Scholar
  36. Sen A. (1985) Commodities and capabilities. North-Holland, AmsterdamGoogle Scholar
  37. Sen A. (1987) The standard of living: The Tanner lectures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. Shorrocks A. F. (1983) Ranking income distributions. Economica 50(197): 3–17CrossRefGoogle Scholar
  39. Srinivasan T. N. (1994) Human development: A new paradigm or reinvention of the wheel?. American Economic Review, Papers and Proceedings 84(2): 238–243Google Scholar
  40. Streeten P. (1994) Human development: Means and ends. American Economic Review, Papers and Proceedings 84(2): 232–237Google Scholar
  41. United Nations Development Program. (1993). Human Development Report. New York: Oxford University Press.Google Scholar
  42. Van Der Vaart A. W., Wellner J. A. (1996) Weak convergence and empirical processes: With applications to statistics. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mehmet Pinar
    • 1
  • Thanasis Stengos
    • 1
    Email author
  • Nikolas Topaloglou
    • 2
  1. 1.Department of EconomicsUniversity of GuelphGuelphCanada
  2. 2.Department of International European & Economic StudiesAthens University of Economics and BusinessAthensGreece

Personalised recommendations